Division algebras with integral elements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 221469
(http://iopscience.iop.org/0305-4470/22/10/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:42

Please note that terms and conditions apply.

Division algebras with integral elements

Mehmet Koca $\dagger \S \|$ and Nazife Ozdes $\ddagger \S$
\dagger International Centre for Theoretical Physics, Trieste, Italy
\ddagger CERN, 1211 Geneva 23, Switzerland

Received 19 July 1988

Abstract

Pairing two elements of a given division algebra furnished with a multiplication rule leads to an algebra of higher dimension restricted by 8 . This fact is used to obtain the roots of $S O(4)$ and $S P(2)$ from the roots ∓ 1 of $S U(2)$ and the weights $\mp \frac{1}{2}$ of its spinor representation. The root lattice of $\mathrm{SO}(8)$ described by 24 integral quaternions are obtained by pairing two sets of roots of $\operatorname{SP}(2)$. The root system of F_{4} is constructed in terms of 24 integral and 24 'half integral' quaternions. The root lattice of E_{8} expressed as 240 integral octonions are obtained by pairing two sets of roots of F_{4}. Twenty four integral quaternions of $\operatorname{SO}(8)$ forming a discrete subgroup of $\mathrm{SU}(2)$ are shown to be the automorphism group of the root lattices of $\mathrm{SO}(8), \mathrm{F}_{4}$ and E_{8}. The roots of maximal subgroups $\mathrm{SO}(16), \mathrm{E}_{7} \times \mathrm{SU}(2)$, $\mathrm{E}_{6} \times \mathrm{SU}(3), \mathrm{SU}(9)$ and $\mathrm{SU}(5) \times \mathrm{SU}(5)$ of E_{8} are identified with a simple method. Subsets of the discrete subgroup of $S U(2)$ leaving maximal subgroups of E_{8} are obtained. Constructions of E_{8} root lattice with integral octonions in seven distinct ways are made. Magic squares of integral lattices of Goddard, Nahm, Olive, Ruegg and Schwimmer are derived. Possible physical applications are suggested.

1. Introduction

Supersymmetric Yang-Mills and superstring theories [1] in critical spacetime dimensions $d=3,4,6$ and 10 attracted much attention regarding their relevance to four division algebras \mathbb{R} (real numbers), \mathbb{C} (complex numbers), H (quaternions) and (1) (octonions or Cayley numbers) [2]. Their respective dimensions $1,2,4$ and 8 equal $d-2$ physical modes corresponding to various transverse degrees of freedoms in critical spacetime dimensions.

Their norm groups and automorphism groups will be our special interest. The norm groups of division algebras are linear transformations of the components of an element of the algebra which preserve the quadratic norm invariant. The norm groups are the discrete group Z_{2} for real numbers, $\mathrm{U}(1)$ for complex numbers, $\mathrm{SO}(4) \approx$ $\mathrm{SU}(2) \times \mathrm{SU}(2)$ for quaternions and $\mathrm{SO}(8)$ for octonions. The automorphism groups are the groups leaving the multiplication table of the imaginary units of the algebra invariant. They are Z_{2} for complex numbers, $\mathrm{SU}(2)$ for quaternions and G_{2} for octonions [3].

In this work we construct the root systems of the groups $\mathrm{SU}(2), \mathrm{SU}(2) \times \mathrm{SU}(2)$, $\mathrm{SO}(8)$ and E_{8} with integral elements of four division algebras associated with real

[^0]numbers, complex numbers, quaternions and octonions respectively [4]. We start with ± 1, the units of real integers and half integers $\pm \frac{1}{2}$ representing respectively the non-zero roots and the weights of two-dimensional spinor representation of $S U(2)$ and construct the remaining integral elements of complex numbers, quaternions and octonions. To do this we follow a well defined procedure 'pairing' two elements of a given algebra [$a, b]$ to define an element in an algebra of higher dimension. The by-product of this approach is the emergence of the root systems of $\mathrm{SP}(2)$ and F_{4} associated with complex numbers and quaternions respectively. We obtain the root lattice of $\mathrm{SO}(8)$ generated by integral quaternions by pairing two sets of $\mathrm{SP}(2)$ roots expressed as integral and 'half-integral' complex numbers. Similarly the root lattice of E_{8} generated by 240 integral octonions can be obtained by pairing two sets of roots of F_{4} expressed as 24 integral quaternions and 24 'half-integral' quaternions.

The techniques we employ in this work may have an immediate application in the study of lattice construction of chiral fermionic strings, nicely discussed and reviewed by Schellekens and his collaborators [5]. Another relevant application may arise in a possible extension of orbifold compactification of the heterotic string with Abelian symmetries to orbifolds with non-Abelian symmetries [6] with regard to the fact that the root system of $\mathrm{SO}(8)$ corresponds to the binary tetrahedral group which we will discuss later.

The paper is organised as follows. In $\S 2$ we introduce the definition of an integral elements of a division algebra and give the necessary machinary for further calculations. In § 3 we construct the root systems of $\mathrm{SO}(4), \mathrm{SP}(2), \mathrm{SO}(8)$ and F_{4}. The integral quaternions describing the root lattice of $\mathrm{SO}(8)$ form a discrete subgroup of $\mathrm{SU}(2)$ of order 24 called a binary tetrahedral group. It is shown that this group is the automorphism group of the root systems of $S O(8)$ and F_{4}. When 24 short roots of F_{4} multiplied by $\sqrt{2}$ and combined with 24 integral quaternions (long roots of F_{4}) it is shown that they form a discrete subgroup of $\mathrm{SU}(2)$ of order 48 called a binary octahedral group. In $\& 4$ we find a way of pairing of two sets of the roots of F_{4} to obtain the root lattice of E_{8} expressed as integral octonions. As an intermediate step the root lattice of $\mathrm{SO}(16)$ is constructed with pairing two systems of roots of $\mathrm{SO}(9)$ and it is shown that the integral octonions describing $\mathrm{SO}(16)$ roots do not close under octonionic multiplications. This provides a hint for the construction of E_{8} root lattice from two sets of roots of F_{4} which lead to 240 integral octonions which are closed under multiplication. Action of the elements of the binary tetrahedral group on the root system of E_{8} is investigated. Section 5 is devoted to branching of roots of E_{8} under its maximal subgroups $\mathrm{SO}(16), \mathrm{E}_{7} \times \mathrm{SU}(2), \mathrm{E}_{6} \times \mathrm{SU}(3), \mathrm{SU}(9)$ and $\mathrm{SU}(5) \times \mathrm{SU}(5)$. A simple method is devised for the identification of these groups. Symmetries preserving the coset structures of E_{8} with respect to its maximal subgroups are derived. The magic squares of Goddard, Nahm, Olive, Ruegg and Schwimmer (GNORs) [7] are constructed with the method described here. A decomposition of the roots of E_{8} with respect to the subgroup $F_{4} \times G_{2}$ is also obtained. In $\S 6$ we remark on the possible use of the binary tetrahedral group in the vertex construction of level one representation of affine F_{4} and E_{8} algebras. The possible use of the binary tetrahedral and the binary octahedral groups as orbifolds in the compactification of the heterotic string is also mentioned [8].

In appendix 1 we give four different decompositions of the root lattice of E_{8} under $\mathrm{E}_{6} \times \mathrm{SU}(3)$ with relevant symmetries indicated. Appendix 2 deals with additional properties of integral octonions. It is shown that there are seven distinct sets of integral octonions each of which equally describe the root lattice of E_{8}. A simple prescription is suggested for the construction of a desired set.

2. Construction of division algebras with integral elements

According to the celebrated Hurwitz theorem there are only four division algebras formed by real numbers, complex numbers, quaternions and octonions. Let X denote an element over four division algebras. Any element X satisfies a second-order equation (rank equation) with real coefficients

$$
\begin{equation*}
X^{2}-(X+\bar{X}) X+X \bar{X}=0 \tag{2.1}
\end{equation*}
$$

where $X+\bar{X}$ is twice the scalar part and $\bar{X} X=X \bar{X}$ is the norm of $X . \bar{X}$ is complex, quaternionic and octonionic conjugation. The set of elements A satisfying (2.1) with $X+\bar{X}=$ integer and $X \bar{X}=$ integer are called integral elements over four division algebras provided they obey the following conditions:
(i) A is closed under subtraction and multiplication;
(ii) A contains 1;
(iii) A is not a subset of a larger set satisfying (i) and (ii).

It is obvious that ordinary integers m and Gaussian integers $m+\mathrm{in}$ (m and n ordinary integers) satisfy (2.2). Equation (2.2) is also satisfied by 24 integral quaternions [9] and 240 integral octonions [4]. In $\S 3$ we will construct integral elements over division algebras starting with ± 1 and show their relations with the root systems of $\operatorname{SU}(2)$, $\mathrm{SO}(4), \mathrm{SO}(8)$ and E_{8}. For a simple construction we follow the procedure described below.

We may define complex numbers by taking a pair of real numbers. Similarly quaternions and octonions can be defined as pairs of complex numbers and pairs of quaternions respectively. Let P and Q be elements of a given division algebra besides octonions. There does not exist any division algebra beyond octonions. We denote [$P, Q]$ as a pair of such elements and define the product of such pairs by the Cayley-Dixon procedure [10]

$$
\begin{equation*}
[P, Q][R, S]=[P R-S \bar{Q}, R Q+\bar{P} S] \tag{2.3}
\end{equation*}
$$

[P, Q] can also be represented as the sum of these elements where Q is multiplied by an imaginary number on the left, i.e. $[P, Q]=P+e Q$ where $e^{2}=-1$. The conjugate of such a pair is defined by

$$
\begin{equation*}
\overline{[P, Q]}=[\bar{P},-Q] \tag{2.4}
\end{equation*}
$$

so that the norm of $[P, Q]$ is given as

$$
\begin{equation*}
[P, Q] \overline{[P, Q]}=\overline{[P, Q]}[P, Q]=[P \bar{P}+Q \bar{Q}, 0]=P \bar{P}+Q \bar{Q} \tag{2.5}
\end{equation*}
$$

Here $P \bar{P}$ and $Q \bar{Q}$ are real numbers. Since this description is independent of the choice of the imaginary units, particularly in the case of octonions, we will often use (2.3) for the multiplication of two elements. However we will also define the imaginary units to make contact with other approaches. We define the scalar product of two elements [P, Q] and $[R, S$] by

$$
\begin{align*}
\langle[P, Q],[R, S]\rangle & \left.=\frac{1}{2}(\overline{[P, Q}][R, S]+\overline{[R, S]}[P, Q]\right) \\
& =\frac{1}{2}(\bar{P} R+\bar{R} P+Q \bar{S}+S \bar{Q}) \tag{2.6}
\end{align*}
$$

Let us now find the relation between this description and those with explicit imaginary units and give examples. Let a_{0} and a_{1} be two real numbers; then [a_{0}, a_{1}] is a complex number which can be written as

$$
\begin{equation*}
\left[a_{0}, a_{1}\right]=a_{0}+e_{1} a_{1}=C \tag{2.7}
\end{equation*}
$$

where $e_{1}^{2}=-1, \overline{e_{1}}=-e_{1} . e_{1}$ is used in place of the usual imaginary number i with the idea that we will introduce the imaginary units for quaternions and octonions. Let us take two complex numbers $C=a_{0}+e_{1} a_{1}$ and $C^{\prime}=a_{3}+e_{1} a_{2}$ where a_{0}, a_{1}, a_{2} and a_{3} are real numbers. By combining two complex numbers C and C^{\prime} in the usual manner we obtain a quaternion q given by

$$
\begin{equation*}
Q=\left[C, C^{\prime}\right]=a_{0}+e_{1} a_{1}+e_{3}\left(a_{3}+e_{1} a_{2}\right)=a_{0}+e_{1} a_{1}+e_{2} a_{2}+e_{3} a_{3} . \tag{2.8}
\end{equation*}
$$

At this stage we have introduced a second imaginary unit $e_{3}^{2}=-1, \overline{e_{3}}=-e_{3}$ and defined $e_{2}=e_{3} e_{1}=-e_{1} e_{3}$. Similarly we take a pair of quaternions Q and Q^{\prime} and obtain an octonion [Q, Q^{\prime}] by multiplying Q^{\prime} by an imaginary unit e_{7} on the left:
$\left[Q, Q^{\prime}\right]=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+e_{7}\left(a_{4} e_{1}+a_{5} e_{2}+a_{6} e_{3}+a_{7}\right)=\sum_{i=0}^{7} a_{i} e_{i}$
with the definition $e_{4}=e_{7} e_{1}=-e_{1} e_{7}, e_{5}=e_{7} e_{2}=-e_{2} e_{7}, e_{6}=e_{7} e_{3}=-e_{3} e_{7}$. This is the notation of Gunaydin and Gursey [11] and further properties can be found in their pioneering work. Non-commutativity of quaternions and non-associativity of octonions can be proved by using (2.3). Although we do not need a multiplication formula other than (2.3) the reader may find it helpful to use the multiplication table of imaginary units of octonions defined in (2.9). When three imaginary units of octonions e_{a}, e_{b} and e_{c} satisfy the relation $e_{a} e_{b} e_{c}=-1(a \neq b \neq c)$ we call them associative triads and choose units such that they are represented by seven sets of ordered numbers 123, 246, $435,367,651,572$ and 714. There are 28 anti-associative triads which can be obtained using the relations for associative triads.

3. $\mathbf{S O}(8)$ root lattice and the binary tetrahedral group

In what follows all integral elements and 'half-integral' elements have norms of unity and $\frac{1}{2}$ respectively. The way we define half-integral element will soon be clear but we should notice that half-integral elements do not satisfy (2.1) and (2.2). Integral and half-integral elements correspond to long and short roots of the relevant groups to be discussed provided they are multiplied by $\sqrt{2}$.

The units of ordinary integers ± 1 are the non-zero roots of $\mathrm{SU}(2)$ and its twodimensional spinor representation is represented by the weights $\pm \frac{1}{2}$. The spinor weights of $\mathrm{SU}(2)$ will be essential to obtain the integral quaternions, spinor representations of SO(8) and integral octonions. We start with two sets of $\pm 1, \pm \frac{1}{2}$ to obtain integral and half-integral complex numbers providing norms are less than or equal to 1 . The following pairs are the only possibilities:

$$
\begin{align*}
& {[\pm 1,0]= \pm 1 \quad[0, \pm 1]= \pm e_{1}} \tag{3.1a}\\
& {\left[\pm \frac{1}{2}, \pm \frac{1}{2}\right]=\frac{1}{2}\left(\pm 1 \pm e_{1}\right) .} \tag{3.1b}
\end{align*}
$$

In Lie algebras long and short roots differ by $\sqrt{2}$ besides those of G_{2}. For this we have not included those terms like $\left[\pm \frac{1}{2}, 0\right],\left[0, \pm \frac{1}{2}\right],\left[\pm 1, \pm \frac{1}{2}\right]$ and $\left[\pm \frac{1}{2}, \pm 1\right]$ as they do
not correspond to any root at all. Integral complex numbers (Gaussian integers) in (3.1a) are the non-zero roots of $\mathrm{SO}(4) \approx \mathrm{SU}(2) \times \mathrm{SU}(2)$ as ± 1 and $\pm e_{1}$ are orthogonal to each other. Four half-integral complex numbers in (3.1b) are weights of the vector representation $(2,2)$ of $S O(4)$ and together with ± 1 and $\pm e_{1}$ they represent the non-zero roots of $\operatorname{SP}(2)$. This follows from the Coxeter-Dynkin diagram of $\operatorname{SP}(2)$ (figure 1) with the simple roots represented by e_{1} and $\frac{1}{2}\left(1-e_{1}\right)$. We notice that the roots ± 1 form the discrete Abelian group Z_{2} leaving the representations of $\mathrm{SU}(2)$ invariant. Similarly $\pm 1, \pm e_{1}$ form the discrete Abelian group Z_{4} which is the automorphism group of the root lattice of $\mathrm{SO}(4) . \mathrm{Z}_{4}$ also leaves the root system of $\mathrm{SP}(2)$ invariant. If we multiply the short roots (3.1b) of $\operatorname{SP}(2)$ by $\sqrt{ } 2$ we see that the eight elements of $(3.1 a, b)$ form a larger group Z_{8}. A similar situation will arise when we discuss the roots of F_{4}.

Now we come to the crucial point. Although the roots of $\mathrm{SP}(2)$ do not generate an integral lattice, when two sets of $\operatorname{SP}(2)$ roots are paired as in (2.8) they generate the root lattice of $\mathrm{SO}(8)$. To make this clear let us denote the $\mathrm{SP}(2)$ roots by set $C: \pm 1$, $\pm e_{1}, \frac{1}{2}\left(\pm 1 \pm e_{1}\right)$. Take two such sets and form pairs of them such that the norms of the pairs will be equal to 1 . There are only three possibilities:

$$
\begin{align*}
& {\left[\left(\pm 1, \pm e_{1}\right), 0\right]=\left(\pm 1, \pm e_{1}\right) \quad\left[0,\left(\pm 1, \pm e_{1}\right)\right]=\left(\pm e_{3}, \pm e_{2}\right)} \tag{3.2a}\\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \frac{1}{2}\left(\pm 1 \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right) .} \tag{3.2b}
\end{align*}
$$

These were obtained by Hurwitz [9] for the first time and they correspond to 24 discrete points on S_{3}. Since (3.2a) is generated by doubling the roots of $\mathrm{SU}(2) \times \operatorname{SU}(2)$ they represent the four orthogonal roots of $[\mathrm{SU}(2)]^{4}$. Choosing the simple roots $-1, e_{1}$, e_{2}, e_{3} corresponding to each $\mathrm{SU}(2)$ we may draw an extended Coxeter-Dynkin diagram of $\mathrm{SO}(8)$ by joining each simple root to the simple root $\frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right)$ (figure 2). Deleting any one of the roots $-1, e_{1}, e_{2}, e_{3}$ one obtains an $\mathrm{SO}(8)$ diagram which leads to the set of 24 roots of $\mathrm{SO}(8)$ given by $(3.2 a, b)$. We will prefer deleting -1 so that the heighest weight of the adjoint representation is represented by $1 .(3.2 a, b)$ is essentially equivalent to the branching of the adjoint representation of $\mathrm{SO}(8)$ under $[\mathrm{SU}(2)]^{4}$:

$$
\begin{equation*}
28=(3,1,1,1)+(1,3,1,1)+(1,1,3,1)+(1,1,1,3)+(2,2,2,2) . \tag{3.3}
\end{equation*}
$$

The first four brackets describe the adjoints of $S U(2)$ each of which has one zero root. To find the connections with the orthogonal vectors $u_{i}(i=1,2,3,4)$, which is the usual

Figure 1. Coxeter-Dynkin diagram of $\mathrm{SP}(2)$ with simple roots $\frac{1}{2}\left(1+e_{1}\right)$ and e_{1}.

Figure 2. Extended Coxeter-Dynkin diagram of $\operatorname{SO}(8)$ (four disconnected roots of $\operatorname{SU}(2)^{4}$ $\left[\left(-1, e_{1}\right), 0\right]$ and $\left[0,\left(1, e_{1}\right)\right]$ are connected to the root $\left.-\left[\frac{1}{2}\left(-1+e_{1}\right), \frac{1}{2}\left(1+e_{1}\right)\right]\right)$.
notation, we define the simple roots as

$$
\begin{array}{lccc}
e_{1}=u_{1}-u_{2} & \frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right)=u_{2}-u_{3} & e_{2}=u_{3}-u_{4} & e_{3}=u_{3}+u_{4} \\
u_{1}=\frac{1}{2}\left(1+e_{1}\right) & u_{2}=\frac{1}{2}\left(1-e_{1}\right) & u_{3}=\frac{1}{2}\left(e_{3}+e_{2}\right) & u_{4}=\frac{1}{2}\left(e_{3}-e_{2}\right) . \tag{3.4}
\end{array}
$$

One can show that the integral quaternions consist of all expressions $\Sigma_{i=1}^{4} x_{i} u_{i}$ where the x_{i} are integers and $\sum_{i=1}^{4} x_{i}$ is even.

One can easily show that the integral quaternions in (3.2a,b) satisfy (2.1) and (2.2). Thus 24 integral quaternions form a group called binary tetrahedral group denoted by $\langle 3,3,2\rangle$, meaning that it is generated by two independent generators satisfying $S^{3}=T^{3}=$ $(S T)^{2}=Z, Z^{2}=1$ [12]. We may represent the quaternionic units by 2×2 matrices as

$$
\begin{equation*}
e_{0}=\mathrm{I} \quad e_{1}=\mathrm{i} \sigma_{2} \quad e_{2}=\mathrm{i} \sigma_{1} \quad e_{3}=\mathrm{i} \sigma_{3} \tag{3.5}
\end{equation*}
$$

where I is a 2×2 unit matrix and $\sigma_{i}(i=1,2,3)$ are the Pauli matrices. Then we can give the 2×2 matrix representation of $(3.2 a, b)$ which are unitary and of determinant 1. Therefore 24 roots of $S O(8)$ represented by unitary matrices form a discrete subgroup of $\operatorname{SU}(2)$. Taking the simple roots as in (3.4) we can show that the following integral elements are positive roots of $\mathrm{SO}(8)$:
$1, e_{1}, e_{2}, e_{3} \quad S=\frac{1}{2}\left(1+e_{1}+e_{2}+e_{3}\right) \quad T=\frac{1}{2}\left(1-e_{1}+e_{2}+e_{3}\right)$
$U=\frac{1}{2}\left(1+e_{1}-e_{2}+e_{3}\right) \quad V=\frac{1}{2}\left(1+e_{1}+e_{2}-e_{3}\right) \quad \bar{S}, \bar{T}, \bar{U}, \bar{V}$.
The table of products for these is given in table 1. We notice that the roots of $[\mathrm{SU}(2)]^{4}$ $\pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}$ form a subgroup of the binary tetrahedral group of order 8 called a quaternion group. There are four Abelian subgroups generated by S, T, U and V, two of which are independent and satisfy

$$
\begin{align*}
& S^{3}=T^{3}=U^{3}=V^{3}=-1 \\
& S \bar{S}=T \bar{T}=U \bar{T}=V \bar{V}=1 \tag{3.7}\\
& S+\bar{S}=T+\bar{T}=U+\bar{U}=V+\bar{V}=1 .
\end{align*}
$$

The action of a group element P on a root Q of $S O(8)$ can be defined as

$$
\begin{equation*}
Q \rightarrow Q^{\prime}=P Q P^{-1}=P Q \tilde{P} \tag{3.8}
\end{equation*}
$$

Table 1. Table of products of the elements of the binary tetrahedral group.

	1	e_{1}	e_{2}	e_{3}	S	T	U	v	\bar{s}	\bar{T}	\bar{U}	\bar{V}
1	1	e_{1}	e_{2}	${ }_{3}$	S	T	U	V	\bar{s}	\bar{T}	\bar{U}	\bar{v}
e_{1}	e_{1}	-1	e_{3}	$-e_{2}$	$-\bar{U}$	U	-T	$-\bar{s}$	v	- \bar{V}	s	\bar{T}
e_{2}	e_{2}	$-e_{3}$	-1	e_{1}	$-\bar{V}$	$-\bar{S}$	$\stackrel{\text { v }}{ }$	$-U$	T	\bar{U}	$-\bar{T}$	s
e_{3}	e_{3}	e_{2}	$-e_{1}$	${ }^{-1}$	$-\bar{T}$	-V	$-\bar{S}$	T	U	s	\bar{V}	$-\bar{U}$
$\stackrel{S}{5}$	$\stackrel{S}{5}$	$-\bar{v}$	$-\bar{T}$	$-\bar{U}$	$-\bar{S}$	e_{3}	e_{1}	e_{2}	1	v	T	U
T	T	v	$-\bar{U}$	$-\hat{S}$	e_{2}	$-\bar{T}$	s	\bar{U}	\bar{V}	1	$-e_{1}$	e_{3}
U	U	$-\bar{S}$	\underline{T}	-V	e_{3}	\bar{v}	$-\bar{U}$	s	\bar{T}	e_{1}	1	$-e_{2}$
\checkmark	\checkmark	$-T$	$-\bar{S}$	${ }^{\text {U }}$	e_{1}	s	\bar{T}	$-\bar{V}$	$\stackrel{\rightharpoonup}{U}$	$-e_{3}$	e_{2}	1
$\stackrel{\bar{S}}{\bar{T}}$	\bar{S}	U	v	T	1	\bar{U}	\bar{V}	\bar{T}	-S	$-e_{2}$	$-e_{3}$	- ${ }_{1}$
\bar{T}	\bar{T}	$-\bar{U}$	$\stackrel{\text { s }}{ }$	\bar{v}	U	1	$-e_{2}$	e_{1}	$-e_{3}$	$-T$	v	\bar{s}
\bar{U}	\bar{U}	\bar{T}	$-\bar{V}$	$\stackrel{S}{s}$	v	e_{2}	1	$-e_{3}$	$-e_{i}$	\bar{s}	$-U$	T
\bar{v}	\bar{v}	s	\bar{U}	$-\bar{T}$	T	$-e_{t}$	e_{3}	1	$-e_{2}$	U	\bar{s}	$-V$

which corresponds to a rotation of angle π or $2 \pi / 3$ in a certain hyperplane depending on the choice of the group element P. Actually any quaternion can be written in the exponential form

$$
\begin{equation*}
P=\mathrm{e}^{\alpha \Omega}=P_{0} e_{0}+P_{1} e_{1}+P_{2} e_{2}+P_{3} e_{3}=\cos \alpha+\Omega \sin \alpha \quad P \bar{P}=1 \tag{3.9}
\end{equation*}
$$

where $\cos \alpha=\frac{1}{2}(P+\bar{P})$ and $\Omega=\left(P_{1} e_{1}+P_{2} e_{2}+P_{3} e_{3}\right) / \sqrt{P_{1}^{2}+P_{2}^{2}+P_{3}^{2}}$ with $\Omega^{2}=-1, \bar{\Omega}=$ $-\Omega$. Therefore a transformation of the form

$$
\begin{equation*}
Q \rightarrow Q^{\prime}=\mathrm{e}^{\alpha \Omega} Q \mathrm{e}^{-\alpha \Omega} \tag{3.10}
\end{equation*}
$$

is a rotation of angle 2α in the plane determined by the origin 0 , unit vector 1 and P. It is obvious from (3.9) that transformations by $\pm e_{i}(i=1,2,3)$ and $\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$ correspond to angles π and $2 \pi / 3$ respectively.

It is clear from (3.8) that the scalar part of a quaternion is left invariant. Moreover the angle between any two integral quaternion is also left invariant. Therefore the binary tetrahedral group constitutes a discrete subgroup of $\operatorname{SU}(2)$, the automorphism group of quaternions, which also preserve the root structure of $\mathrm{SO}(8)$. Since the scalar part of a quaternion is left invariant under the binary tetrahedral group it is sufficient to know how the imaginary units e_{1}, e_{2}, and e_{3} transform under the action of group elements. Using table 1 one can show that under the action of the elements e_{1}, e_{2}, e_{3}, S, T, U and V the imaginary units transform as

$$
\begin{align*}
& \pm e_{1}:\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \rightarrow\left[\begin{array}{r}
e_{1} \\
-e_{2} \\
-e_{3}
\end{array}\right] \quad \pm e_{2}:\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \rightarrow\left[\begin{array}{r}
-e_{1} \\
e_{2} \\
-e_{3}
\end{array}\right] \quad \pm e_{3}:\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \rightarrow\left[\begin{array}{r}
-e_{1} \\
-e_{2} \\
e_{3}
\end{array}\right] \tag{3.11a}\\
& \pm S:\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
e_{2} \\
e_{3} \\
e_{1}
\end{array}\right] \quad \pm T:\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \rightarrow\left[\begin{array}{l}
-e_{3} \\
-e_{1} \\
e_{2}
\end{array}\right] \rightarrow\left[\begin{array}{r}
e_{3} \\
-e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \\
& \pm V:\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] \rightarrow\left[\begin{array}{r}
-e_{3} \\
e_{1} \\
-e_{2}
\end{array}\right] .
\end{align*}
$$

It is clear from ($3.11 a, b$) that the quaternion algebra is left invariant under the binary tetrahedral group. The group element S rotates the simple roots e_{1}, e_{2} and e_{3} in cyclic order. On the other hand we know that the outer automorphism of the $\mathrm{SO}(8)$ root lattice is the symmetric group S_{3} generated by an element which permutes the simple roots e_{1}, e_{2} and e_{3} in cyclic order and an element A which exchanges the order of two roots, say, $e_{2} \Leftrightarrow e_{3}$. The element S of S_{3} is nothing other than the element S of the binary tetrahedral group. However A is not in the set of elements of the binary tetrahedral group as it does not preserve the quaternion algebra. We shall see later that S, T, U and V play important roles concerning the decomposition of E_{8} roots with respect to its maximal subgroup $\mathrm{E}_{6} \times \mathrm{SU}(3) . S$ preserves the level of the $\mathrm{SO}(8)$ roots which has been used to determine the cocyles arising in the vertex operator construction of affine F_{4} algebra [7].

Now we calculate the weights of three eight-dimensional representations of $\mathrm{SO}(8)$ in terms of quaternionic units. We adopt the usual notation $8_{\mathrm{v}}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$, $8_{s}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$ and $8_{c}=\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right)$ for the vector, spinor and antispinor representations
respectively in the Dynkin formalism [13]. It is straightforward to obtain the following weights for three eight-dimensional representations of $S O(8)$ as

$$
\begin{equation*}
8_{\mathrm{v}}: \frac{A_{1}}{\frac{1}{2}\left(\pm 1 \pm e_{1}\right)} \quad 8_{\mathrm{s}}: \frac{A_{3}}{\frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)} \quad 8_{\mathrm{c}}: \frac{A_{2}}{\frac{1}{2}\left(\pm 1 \pm e_{3}\right)} \frac{\frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)}{\frac{1}{2}\left(\pm e_{3} \pm e_{1}\right) .} \tag{3.12}
\end{equation*}
$$

Since the choices for the representations $\mathrm{v}, \mathrm{s}, \mathrm{c}$ are arbitrary we have also denoted them by other labels A_{1}, A_{3} and A_{2} denoting the whole set of corresponding eight weights. We note that each imaginary unit characterises one of the eight-dimensional representations. In fact the highest weight of the adjoint representation of $\mathrm{SO}(8)$ equals 1. Thus the conjugacy classes of $S O(8)$ representations are represented by four units of quaternions $1, e_{1}, e_{2}$ and e_{3}. Using (3.4) one can also express (3.12) in terms of the orthogonal vectors $u_{i}(i=1,2,3,4)$. We also note that the group elements \bar{T}, \bar{U} and \bar{V} rotate the eight-dimensional representations in the cyclic order $8_{v} \rightarrow 8_{s} \rightarrow 8_{c} \rightarrow 8_{v}$. In contrast, S, \bar{T}, \bar{U} and \bar{V} do not preserve the levels of the weights. On the other hand the quaternion subgroup leaves each representation invariant while changing the levels of the weights within a given representation. These properties will be fully utilised in the construction of the E_{8} root lattice.

Similar to the case in $\operatorname{SP}(2)$, if we multiply the weights in (3.12) by $\sqrt{2}$ and combine them with the 24 integral quaternions $(3.2 a, b)$ we obtain a new discrete subgroup of $\mathrm{SU}(2)$ of order 48 which admits the binary tetrahedral group as a subgroup. This new group, denoted by $\langle 4,3,2\rangle$, is called a binary octahedral group [12]. We will show in the next section that the 24 integral quaternions ($3.2 a, b$) and the 24 weights in (3.12) form the root system of F_{4} with 24 long and 24 short roots respectively.

4. Integral octonions and their symmetries

This section and $\S 5$ will constitute the main parts of our work as they are related to the root lattice of E_{8}. First we notice that the $\mathrm{SO}(8)$ root lattice with its weights of vector representation 8_{v} in (3.12) are the roots of $\mathrm{SO}(9)$ where the remaining two spinor representations in (3.12) constitute the 16 -dimensional spinor representation of $\mathrm{SO}(9)$. In pairing two $\operatorname{SP}(2)$ roots, if we had allowed pairings where norms less than 1 were allowed, we would have uniquely obtained the $\mathrm{SO}(9)$ root system. F_{4} admits SO (9) as the maximal subgroup so that the 48 non-zero roots of F_{4} decomposes under $\mathrm{SO}(9)$ as

$$
\begin{equation*}
48=32+16 \tag{4.1}
\end{equation*}
$$

Here 32 is the number of non-zero roots of $\mathrm{SO}(9)$. Equation (4.1) further splits under $\mathrm{SO}(8)$ as

$$
\begin{equation*}
48=24+8_{\mathrm{v}}+8_{\mathrm{s}}+8_{\mathrm{c}} . \tag{4.2}
\end{equation*}
$$

We follow the same procedure described in $\S 3$ and first combine two $\mathrm{SO}(9)$ roots and check whether they correspond to any familiar root lattice. In fact when we pair two sets of $\mathrm{SO}(9)$ roots of A_{0} and A_{1} we see that there is a unique way of obtaining a set of 112 integral octonions of unit norm which constitute the root lattice of $\mathrm{SO}(16)$. This pairing can be arranged as follows:

$$
\begin{equation*}
112=\left[A_{0}, 0\right]+\left[0, A_{0}\right]+\left[A_{1}, A_{1}\right] \tag{4.3}
\end{equation*}
$$

This is in accord with the branching of $\mathrm{SO}(16)$ with respect to its maximal subgroup $\mathrm{SO}(8) \times \mathrm{SO}(8):$

$$
\begin{equation*}
120=(28,1)+(1,28)+\left(8_{v}, 8_{v}\right) \tag{4.4}
\end{equation*}
$$

An explicit representation of 112 non-zero roots of $\mathrm{SO}(16)$ can be written in terms of integral octonions as follows:

$$
\begin{array}{ll}
{\left[A_{0}, 0\right]:} & \pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right) \\
{\left[0, A_{0}\right]:} & \pm e_{7}, \pm e_{4}, \pm e_{5}, \pm e_{6}, \quad \frac{1}{2}\left(\pm e_{4} \pm e_{5} \pm e_{6} \pm e_{7}\right) \\
{\left[A_{1}, A_{1}\right]:} & {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \frac{1}{2}\left(\pm 1 \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{4} \pm e_{7}\right)} \tag{4.5}\\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{5} \pm e_{6}\right)} \\
& {\left[\frac{1}{2}\left(\pm e_{2} \pm e_{3}\right), \frac{1}{2}\left(\pm 1 \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm e_{2} \pm e_{3} \pm e_{4} \pm e_{7}\right)} \\
& {\left[\frac{1}{2}\left(\pm e_{2} \pm e_{3}\right), \frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm e_{2} \pm e_{3} \pm e_{5} \pm e_{6}\right) .}
\end{array}
$$

We shall see that this set is not closed under multiplication. The next pairing must be done among the roots of F_{4} in (4.2) which combines three eight-dimensional representations of length 1 and the roots of adjoint of $\mathrm{SO}(8)$ of length square 2 . It is interesting to note that the long and short roots of F_{4} split in equal numbers of 24 each. A similar situation occurred in the case of $\operatorname{SP}(2)$. The simple roots of F_{4} (figure 3) can be chosen as

$$
\begin{equation*}
\alpha_{1}=\frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right) \quad \alpha_{2}=e_{2} \quad \alpha_{3}=\frac{1}{2}\left(e_{3}-e_{2}\right) \quad \alpha_{4}=\frac{1}{2}\left(e_{1}-e_{3}\right) \tag{4.6}
\end{equation*}
$$

When we calculate the roots of F_{4} with this choice of simple roots we exactly get a collection of A_{0}, A_{1}, A_{2} and A_{3} where the positive roots are given by

$$
\begin{array}{ll}
1, \quad e_{1}, & e_{2}, \\
e_{3} \quad \frac{1}{2}\left(1 \pm e_{1} \pm e_{2} \pm e_{3}\right) \\
\frac{1}{2}\left(1 \pm e_{1}\right) & \frac{1}{2}\left(\pm e_{2}+e_{3}\right) \\
\frac{1}{2}\left(1 \pm e_{3}\right) & \frac{1}{2}\left(\pm e_{1}+e_{2}\right) \tag{4.7d}\\
\frac{1}{2}\left(1 \pm e_{2}\right) & \frac{1}{2}\left(\pm e_{3}+e_{1}\right) .
\end{array}
$$

Here (4.7a,b, c, d) denote the positive weights of the adjoint, $8_{v}, 8_{s}$ and 8_{c} of $\operatorname{SO}(8)$ respectively. Here again the quaternionic unit 1 represents the heighest root of F_{4} as in the case of $\mathrm{SO}(8)$. The weights in (3.12) also constitute the 24 non-zero weights of the 26 -dimensional representation of F_{4}.

After this brief remark we are ready to construct the root lattice of E_{8} with integral octonions. Since we have already constructed the root lattice of the $S O$ (16) subgroup

Figure 3. Coxeter-Dynkin diagram of F_{4} with integral and half-integral quaternions.
of E_{8}, what remains is a pairing of two sets of $A_{2}+A_{3}$. At this stage an ambiguity arises. We may have the following pairings:

$$
\begin{array}{ll}
{\left[A_{2}, A_{2}\right]} & {\left[A_{3}, A_{3}\right]} \\
{\left[A_{2}, A_{3}\right]} & {\left[A_{3}, A_{2}\right]} \tag{4.8b}
\end{array}
$$

for the 128 -dimensional spinor representation of $\mathrm{SO}(16)$ to be added to 112 non-zero roots to yield 240 non-zero roots of E_{8}. Which of them would constitute the right structure can be tested by the conditions stated in (2.2). The crucial criterion here is the closure of the set under the octonionic multiplication. We will show that the true structure will emerge only if we take the pairs in $(4.8 b)$. To prove this we calculate the products of the integral octonions given by (4.3) and show that their products generate two additional pairs $\left[A_{2}, A_{3}\right]$ and $\left[A_{3}, A_{2}\right]$. Let us set up the required products by using (2.3):

$$
\begin{align*}
& {\left[A_{0}, 0\right]\left[A_{0}^{\prime}, 0\right]=\left[A_{0} A_{0}^{\prime}, 0\right] \subset\left[A_{0}, 0\right]} \tag{4.9a}\\
& {\left[A_{0}, 0\right]\left[0, A_{0}^{\prime}\right]=\left[0, \bar{A}_{0} A_{0}^{\prime}\right] \subset\left[0, A_{0}\right]} \tag{4.9b}\\
& {\left[0, A_{0}\right]\left[0, A_{0}^{\prime}\right]=\left[-A_{0}^{\prime} \bar{A}_{0}^{\prime}, 0\right] \subset\left[A_{0}, 0\right]} \tag{4.9c}\\
& {\left[A_{0}, 0\right]\left[A_{1}, A_{1}^{\prime}\right]=\left[A_{0} A_{1}, \bar{A}_{0} A_{1}^{\prime}\right] \subset[M, N]} \tag{4.9d}\\
& {\left[0, A_{0}\right]\left[A_{1}, A_{1}^{\prime}\right]=\left[-A_{1}^{\prime} \bar{A}_{0}, A_{1} A_{0}\right] \subset[M, N]} \tag{4.9e}\\
& {\left[A_{1}, A_{1}^{\prime}\right]\left[B_{1}, B_{1}^{\prime}\right]=\left[A_{1} B_{1}-B_{1}^{\prime} \bar{A}_{1}^{\prime}, B_{1} A_{1}^{\prime}+\bar{A}_{1} B_{1}^{\prime}\right] \subset[C, D] .} \tag{4.9f}
\end{align*}
$$

Equations (4.9a,b) mean that the set of integral octonions [$\left.A_{0}, 0\right]$ and [$0, A_{0}$] preserve their form by a left product of quaternions. [$0, A_{0}$] represents a special set of integral octonions as they are obtained by multiplying the integral quaternions by e_{7} on the left. The product of this special set with itself yields 24 integral quaternions [$A_{0}, 0$] presented in ($4.9 c$). Equations ($4.9 d, e, f$) deserve more attention as their structures are more involved. Before analysing them a few remarks are necessary about the products of the form $A_{0} A_{1}$ and $\bar{A}_{0} A_{1}$. The integral quaternions of A_{0} can be split into two sets of elements, one set results in $A_{0} A_{1} \rightarrow A_{1}$ and $\bar{A}_{0} A_{1} \rightarrow A_{1}$; the other set of elements yields products of the form $A_{0} A_{1}=A_{3}$ and $\bar{A}_{0} A_{1}=A_{2}$ and vice versa. To give a simple example let us take e_{1} from A_{0} and $\frac{1}{2}\left(1+e_{1}\right)$ from A_{1}. It is clear that a left multiplication of $\frac{1}{2}\left(1+e_{1}\right)$ by e_{1} and \bar{e}_{1} leaves $\frac{1}{2}\left(1+e_{1}\right)$ in the same set A_{1}. Indeed not only e_{1} but the whole elements $\pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}$ of the quaternion group satisfy this property. The remaining elements S, T, U, V and their conjugates with their negatives satisfy the second condition. To make this point also clear let us choose S from A_{0} and $\frac{1}{2}\left(e_{3}+e_{2}\right)$ and $\frac{1}{2}\left(1+e_{1}\right)$ from A_{1}. Using table 1 we can write the products in (4.9d) as

$$
\begin{align*}
& S_{2}^{1}\left(e_{3}+e_{2}\right)=-\frac{1}{2}(\bar{U}+\bar{T})=\frac{1}{2}\left(-1+e_{3}\right) \tag{4.10a}\\
& \bar{S}_{\frac{1}{2}}^{1}\left(1+e_{1}\right)=\frac{1}{2}(\bar{S}+U)=\frac{1}{2}\left(1-e_{2}\right) . \tag{4.10b}
\end{align*}
$$

Thus the above statement is true as $\frac{1}{2}\left(-1+e_{3}\right)$ and $\frac{1}{2}\left(1-e_{2}\right)$ belong to the sets A_{3} and A_{2} respectively. To see the validity of our statement for all elements of A_{0} and A_{1} we recall (3.11b) that the elements S, T, U and V always map a given set of weights to another set of weights so that the corresponding maps of $\bar{S}, \bar{T}, \bar{U}$ and \bar{V} do not coincide. Hence the right-hand side of (4.9d) should be either $\left[A_{2}, A_{3}\right]$ or $\left[A_{3}, A_{2}\right]$. For the same reason (4.9e) should be also in the same form, i.e. [M, N] should be either [$\left.A_{2}, A_{3}\right]$ or $\left[A_{3}, A_{2}\right]$. The analysis of (4.9f) requires more effort; nevertheless one can
show that the general structure of $[C, D]$ is one of the forms $\left[A_{0}, 0\right],\left[0, A_{0}\right],\left[A_{1}, A_{1}\right]$, [A_{2}, A_{3}] or $\left[A_{3}, A_{2}\right]$ but nothing else. To summarise, we can generate the root lattice of E_{8} in the form of integral octonions from the root lattice of $\mathrm{SO}(16)$ by performing multiple products of the elements of the set (4.5). When the terms $\left[A_{2}, A_{3}\right]$ and [A_{3}, A_{2}] are added to (4.4) or (4.5) we get 240 integral octonions representing the root lattice of E_{8}. To check whether the new set is closed under multiplication we calculate the remaining products and show that the new set is really closed. To give a counterexample that two types of terms of the forms $\left[A_{1}, A_{1}\right]$ and $\left[A_{2}, A_{2}\right]$ cannot be in a given set of integral octonions representing the roots of E_{8} let us consider the following product of these pairs:

$$
\begin{equation*}
\left[A_{1}, A_{1}\right]\left[A_{2}, A_{2}\right]:\left[\frac{1}{2}\left(1+e_{1}\right), \frac{1}{2}\left(e_{2}+e_{3}\right)\right]\left[\frac{1}{2}\left(1+e_{2}\right), \frac{1}{2}\left(1+e_{2}\right)\right]=\left[\frac{1}{2}\left(e_{1}+e_{2}+e_{3}\right), \frac{1}{2} e_{2}\right] \tag{4.11}
\end{equation*}
$$

Since the terms in the bracket on the right-hand side of (4.11) do not correspond to eight-dimensional representations of $\mathrm{SO}(8)$ this term cannot be in the required set of integral octonions of E_{8}. Therefore the set of the integral octonions satisfying (2.1) and (2.2) and representing the root lattice of E_{8} must be of the form

$$
\begin{equation*}
240=\left[A_{0}, 0\right]+\left[0, A_{0}\right]+\left[A_{1}, A_{1}\right]+\left[A_{3}, A_{2}\right]+\left[A_{2}, A_{3}\right] \tag{4.12}
\end{equation*}
$$

This represents an interesting pairing of two sets of the 48 roots of $\mathrm{F}_{4}: A_{0}+A_{1}+A_{2}+A_{3}$.
Let us now investigate the problem from a different point of view. We wish to discuss how two Coxeter-Dynkin diagrams of $\mathrm{SO}(8)$ can be connected to construct a Coxeter-Dynkin diagram of E_{8}. We take two sets of Coxeter-Dynkin diagrams of $\mathrm{SO}(8)$ whose simple roots are expressed as in (3.4) and multiply the quaternionic simple roots in one set by e_{7} on the left and then connect them to form an extended diagram of $\mathrm{SO}(16)$ by adding a simple root linking two simple roots, one from each $\mathrm{SO}(8)$ (figure 4). To end up with an extended Coxeter-Dynkin diagram of E_{8} we delete one of the roots in figure 4 and add one more root to right end of the diagram figure 5. At this point another puzzling situation arises. Namely, if we keep the orders of simple roots in two $\mathrm{SO}(8)$ diagrams we always generate two sets of roots in the form $\left[A_{i}, A_{i}\right]$ and $\left[A_{j}, A_{j}\right](i \neq j=1,2,3)$. Since we have already proved that two sets like these terms should be out of the root lattice of E_{8} the combination of two $\mathrm{SO}(8)$ diagrams in this manner is not allowed. However there is a simple solution: one can interchange the orders of two simple roots say $e_{2} \Leftrightarrow e_{3}$ in one of the diagram and then combine. Then one obtains a legal extended Coxeter-Dynkin diagram of E_{8} (figure 5). When we change the orders of two simple roots in one of the $\mathrm{SO}(8)$ diagrams we

Figure 4. Extended Coxeter-Dynkin diagram of $\mathrm{SO}(16)$ (the diagram is made by combining two $\mathrm{SO}(8)$ diagrams in one of which two roots $e_{2} \Leftrightarrow e_{3}$ is interchanged and the roots of this $\mathrm{SO}(8)$ is multiplied by e_{7} on the left).

Figure 5. Extended Coxeter-Dynkin diagram of E_{8} (integral quaternions representing the SO(8) subgroup are manifest).
also change the label of two spinor representations. While in the first diagram, say, spinor and antispinor are represented by the set of weights A_{3} and A_{2} respectively; in the second the labels of the representations are reversed.

Thus we obtain a decomposition of E_{8} under $\mathrm{SO}(8) \times \mathrm{SO}(8)$

$$
\begin{equation*}
248=(\mathbf{2 8}, \mathbf{1})+(\mathbf{1}, \mathbf{2 8})+\left(\mathbf{8}_{\mathrm{v}}, \mathbf{8}_{\mathrm{v}}\right)+\left(\mathbf{8}_{\mathrm{s}}, \mathbf{8}_{\mathrm{s}}\right)+\left(\mathbf{8}_{\mathrm{c}}, \mathbf{8}_{\mathrm{c}}\right) . \tag{4.13}
\end{equation*}
$$

The non-zero roots of E_{8} are represented by the following integral octonions:

$$
\begin{align*}
&(24,1): \pm 1, \quad \pm e_{1}, \quad \pm e_{2}, \quad \pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right) \tag{4.14a}\\
&(1,24): \pm e_{7}, \quad \pm e_{4}, \quad \pm e_{5}, \quad \pm e_{6}, \quad \frac{1}{2}\left(\pm e_{7} \pm e_{4} \pm e_{5} \pm e_{6}\right) \tag{4.14b}\\
&\left(\mathbf{8}_{\mathrm{v}}, \mathbf{8}_{\mathrm{v}}\right): {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \frac{1}{2}\left(\pm 1 \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{4} \pm e_{7}\right) } \\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \frac{1}{2}\left(\pm e_{3} \pm e_{2}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{5} \pm e_{6}\right) } \tag{4.14c}\\
& {\left[\frac{1}{2}\left(\pm e_{3} \pm e_{2}\right), \frac{1}{2}\left(\pm 1 \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm e_{2} \pm e_{3} \pm e_{4} \pm e_{7}\right) } \\
& {\left[\frac{1}{2}\left(\pm e_{3} \pm e_{2}\right), \frac{1}{2}\left(\pm e_{3} \pm e_{2}\right)\right]=\frac{1}{2}\left(\pm e_{2} \pm e_{3} \pm e_{5} \pm e_{6}\right) } \\
&\left(\boldsymbol{8}_{\mathrm{s}}, \mathbf{8}_{\mathrm{s}}\right): \quad {\left[\frac{1}{2}\left(\pm 1 \pm e_{3}\right), \frac{1}{2}\left(\pm 1 \pm e_{2}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{3} \pm e_{5} \pm e_{7}\right) } \\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{3}\right), \frac{1}{2}\left(\pm e_{3} \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{3} \pm e_{4} \pm e_{6}\right) } \tag{4.14d}\\
& {\left[\frac{1}{2}\left(\pm e_{1} \pm e_{2}\right), \frac{1}{2}\left(\pm 1 \pm e_{2}\right)\right]=\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{5} \pm e_{7}\right) } \\
& {\left[\frac{1}{2}\left(\pm e_{1} \pm e_{2}\right), \frac{1}{2}\left(\pm e_{3} \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{4} \pm e_{6}\right) } \\
&\left(\mathbf{8}_{\mathrm{c}}, \mathbf{8}_{\mathrm{c}}\right): \quad {\left[\frac{1}{2}\left(\pm 1 \pm e_{2}\right), \frac{1}{2}\left(\pm 1 \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{2} \pm e_{6} \pm e_{7}\right) } \\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{2}\right), \frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{2} \pm e_{4} \pm e_{5}\right) } \tag{4.14e}\\
& {\left[\frac{1}{2}\left(\pm e_{3} \pm e_{1}\right), \frac{1}{2}\left(\pm 1 \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm e_{1} \pm e_{3} \pm e_{6} \pm e_{7}\right) } \\
& {\left[\frac{1}{2}\left(\pm e_{3} \pm e_{1}\right), \frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)\right]=\frac{1}{2}\left(\pm e_{1} \pm e_{3} \pm e_{4} \pm e_{5}\right) . }
\end{align*}
$$

To make contact with the generally accepted notation for simple roots derived from orthogonal vectors $u_{i}(i=1,2,3,4)$ of (3.4) we introduce

$$
\begin{align*}
& l_{1}=\left[0,-\frac{1}{2}\left(e_{3}+e_{2}\right)\right]=\left[0,-u_{3}\right]=-\frac{1}{2}\left(e_{5}+e_{6}\right) \\
& l_{2}=\left[0,-\frac{1}{2}\left(1-e_{1}\right)\right]=\left[0,-u_{2}\right]=\frac{1}{2}\left(e_{4}-e_{7}\right) \\
& l_{3}=\left[0,-\frac{1}{2}\left(1+e_{1}\right)\right]=\left[0,-u_{1}\right]=-\frac{1}{2}\left(e_{4}+e_{7}\right) \\
& l_{4}=\left[\frac{1}{2}\left(1+e_{1}\right), 0\right]=\left[u_{1}, 0\right]=\frac{1}{2}\left(1+e_{1}\right) \tag{4.15}\\
& l_{5}=\left[\frac{1}{2}\left(1-e_{1}\right), 0\right]=\left[u_{2}, 0\right]=\frac{1}{2}\left(1-e_{1}\right) \\
& l_{6}=\left[\frac{1}{2}\left(e_{3}+e_{2}\right), 0\right]=\left[u_{3}, 0\right]=\frac{1}{2}\left(e_{3}+e_{2}\right) \\
& l_{7}=\left[\frac{1}{2}\left(e_{3}-e_{2}\right), 0\right]=\left[u_{4}, 0\right]=\frac{1}{2}\left(e_{3}-e_{2}\right) \\
& l_{8}=\left[0,-\frac{1}{2}\left(e_{3}-e_{2}\right)\right]=\left[0,-u_{4}\right]=\frac{1}{2}\left(e_{5}-e_{6}\right) .
\end{align*}
$$

For a simple representation of E_{8} in terms of its maximal subgroup $\operatorname{SU}(9)$ we also introduce another vector l_{0} defined by

$$
\begin{equation*}
l_{0}=\frac{1}{2} \sum_{r=1}^{8} l_{r}=\frac{1}{2}\left(1+e_{3}-e_{6}-e_{7}\right)=\left[\frac{1}{2}\left(1+e_{3}\right),-\frac{1}{2}\left(1+e_{3}\right)\right] . \tag{4.16}
\end{equation*}
$$

With these vectors the simple roots in the extended Coxeter-Dynkin diagram of E_{8} in figure 5 are represented from left to right by
$l_{8}-l_{1}, \quad l_{1}-l_{2}, \quad l_{2}-l_{3}, \quad l_{3}-l_{4}, \quad l_{4}-l_{5}, \quad l_{5}-l_{6}, \quad l_{6}-l_{7}, \quad l_{7}-l_{0}, \quad l_{6}+l_{7}$.
Because of triality attributing labels to the eight-dimensional representations of $\mathrm{SO}(8)$ is completely arbitrary we could have equally represented the vector representation of $\mathrm{SO}(8)$ by the sets A_{2} and/or A_{3}. Then we could have started with [A_{2}, A_{2}] or [A_{3}, A_{3}] instead of $\left[A_{1}, A_{1}\right]$ to construct the root lattice of $\mathrm{SO}(16)$. Then we would have generated the rest of the roots of E_{8} with a similar procedure to that described above. However the new sets of integral octonions would be completely different from those of (4.14). In appendix 2 we show that the integral octonions representing the root lattice of E_{8} can be built in seven distinct ways which can be obtained by replacing the imaginary units in (4.14) by the cyclic order $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 1$ and by its repeated application. Therefore one should be very careful in distinguishing the integral octonions representing the root lattice of E_{8}. After all there are $\binom{8}{4} \times 16=1120$ distinct integral octonions of the form $\frac{1}{2}\left(\pm e_{a} \pm e_{b} \pm e_{c} \pm e_{d}\right)(a \neq b \neq c \neq d \neq=0,1, \ldots, 7)$ which are distributed in 7 sets of 240 integral octonions so that each set separately satisfies (2.1) and (2.2).

Before we end this section we discuss the action of the binary tetrahedral group on the rest of integral octonions in (4.14). Let P be an element of the binary tetrahedral group, i.e. an integral quaternion of $\left[A_{0}, 0\right]$. Let R represents an octonion of the form [M, N], not necessarily of unit norm. We can define the action of P on R in the form similar to the one given by (3.8)

$$
\begin{equation*}
R \rightarrow R^{\prime}=P R \bar{P} \quad \bar{P}=P^{-1} . \tag{4.18}
\end{equation*}
$$

To have this make sense the right-hand side of (4.18) must be associative. Indeed, this is the case. To prove this we can calculate the associator of the elements $[P, 0]$, $[M, N],[Q, 0]:$

$$
\begin{equation*}
([P, 0],[M, N],[Q, 0])=[P M Q-P M Q, Q \bar{P} N-\bar{P} Q N] . \tag{4.19}
\end{equation*}
$$

Since P, M, N and Q are quaternions each triple product in the bracket is associative. To make (4.19) vanish we should have $Q \bar{P}=\bar{P} Q$. This is satisfied for $Q=\bar{P}$ and $Q=P$. Therefore (4.18) is an unambiguous transformation of the form

$$
\begin{equation*}
[P, 0][M, N][\bar{P}, 0]=\left[P M \bar{P}, \bar{P}^{2} N\right] \tag{4.20}
\end{equation*}
$$

provided we take $Q=\bar{P}$. If we had taken $Q=P$ this would also correspond to a rotation in a hyperplane perpendicular to the hyperplane defined by 0,1 and P. Now we check how the integral octonions (4.14) transform under the action of the elements of the binary tetrahedral group. Since we have already seen the transformations of the integral quaternions of the form [$A_{0}, 0$] we investigate the transformations of the remaining terms in the forms $\left[0, A_{0}\right]$ and $[M, N]$ in (4.14). It is clear from (4.20) that the $\left[0, A_{0}\right.$] preserves its form:

$$
\begin{equation*}
P: \quad\left[0, A_{0}\right] \rightarrow\left[0, \bar{P}^{2} A_{0}\right]=\left[0, A_{0}\right] \tag{4.21}
\end{equation*}
$$

By using ($3.11 a, b$) and ($4.10 a, b$) we can show that the right-hand side of (4.20) remains always in the form $\left[A_{1}, A_{1}\right],\left[A_{3}, A_{2}\right]$ and $\left[A_{2}, A_{3}\right]$. To become more explicit let us choose the elements from the quaternion subgroup and the Abelian subgroups of S, T, U and V. Let $[P, 0]$ be an element of quaternion subgroup of the binary tetrahedral group. By (3.11a) we can show that the left-hand terms in (4.20) remain in the same set of weights $A_{i}=P A_{i} \bar{P}$. The action of the quaternion group elements on the right-hand side leave the element N either unchanged or simply multiply by (-1). Therefore the quaternion group acts as follows:

$$
\begin{equation*}
[P, 0]\left[A_{i}, A_{j}\right][\bar{P}, 0]=\left[A_{i}, A_{j}\right] \quad(i=1,2,3) \tag{4.22}
\end{equation*}
$$

Thus the quaternion subgroup leaves the terms $\left[A_{0}, 0\right],\left[0, A_{0}\right]$ and $\left[A_{i}, A_{j}\right]$ separately invariant.

The actions of the Abelian subgroups can be done in a similar way. Let us do it for S. It is clear from (4.20) and (4.21) that the terms [$\left.A_{0}, 0\right]$ and $\left[0, A_{0}\right]$ are left separately invariant under S. Let us see how it acts on the other terms. Using (4.20) we write

$$
\begin{equation*}
[S, 0]\left[A_{1}, A_{1}\right][\bar{S}, 0]=\left[S A_{1} \bar{S}, \bar{S}^{2} A_{1}\right]=\left[S A_{1} \bar{S},-S A_{1}\right] . \tag{4.23a}
\end{equation*}
$$

Using ($3.11 b$) and table 1 we can show that $S A_{1} \bar{S}=A_{2}$ and $-S A_{1}=A_{3}$. Therefore (4.23a) is in the form [A_{2}, A_{3}]. Similarly we can also show that

$$
\begin{align*}
& {[S, 0]\left[A_{2}, A_{3}\right][\bar{S}, 0]=\left[A_{3}, A_{2}\right]} \tag{4.23b}\\
& {[S, 0]\left[A_{3}, A_{2}\right][\bar{S}, 0]=\left[A_{1}, A_{1}\right] .} \tag{4.23c}
\end{align*}
$$

Equations (4.23a,b,c) indicate that S rotates the sets $\left[A_{1}, A_{1}\right],\left[A_{2}, A_{3}\right]$ and $\left[A_{3}, A_{2}\right]$ in the cyclic order. The other Abelian subgroups T, U and V leave the set of roots of $E_{8}(4.14)$ invariant. Thus we can conclude that the root lattice of E_{8} is preserved under the action of the elements of the binary tetrahedral group. We believe that this feature of the E_{8} root lattice is useful in the vertex construction of the level one representation of the affine E_{8} algebra (for a review, see [14]).

5. Maximal subgroups of \mathbf{E}_{8} and the construction of the GNORS magic square

In this section we give the branching of 240 roots of E_{8} with respect to its subgroups $\mathrm{SO}(16), \mathrm{E}_{7} \times \mathrm{SU}(2), \mathrm{E}_{6} \times \mathrm{SU}(3), \mathrm{SU}(9), \mathrm{SU}(5) \times \mathrm{SU}(5)$ and $\mathrm{F}_{4} \times \mathrm{G}_{2}$ (for a construction of E_{8} algebra with respect to its maximal subgroups, see [15]). The decomposition of a simple Lie group with respect to its maximal and regular subgroups can be found in the standard references [16]. We identify the subgroups of the binary tetrahedral group preserving the coset structures of E_{8} with respect to its subgroups. We decompose the roots of E_{8} in such a way that a magic square similar to that of Freudenthal, Rozenfeld and Tits [17] is transparent. This magic square obtained by GNORS [7] plays an important role in the vertex operator construction for level one representations of the groups of the magic square. Moreover we find their symmetries under the discrete subgroup of $\operatorname{SU}(2)$ with the hope that some additional features may arise concerning the Kac-Moody algebras based on these groups.

5.1. $S O(16)$

$\mathrm{SO}(16)$ is one of the maximal subgroup of E_{8}. The most interesting thing in our construction is not $\mathrm{SO}(16)$ but its subgroup $\mathrm{SO}(8) \times \mathrm{SO}(8)$. We have already given the
roots of $\mathrm{SO}(16)$ in (4.5) in terms of integral octonions. Therefore the remaining roots $\left(8_{s}, 8_{s}\right)+\left(8_{c}, 8_{c}\right)$ of ($4.14 d, e$) constitute an 128 -dimensional spinor representation of $\mathrm{SO}(16)$. Since we have already noted that the quaternion group preserves the labels of vector, spinor and antispinor representations, this is reflected as the symmetry of the root lattice of $\mathrm{SO}(16)$ and the 128 -dimensional spinor representations defining the coset space of $\mathrm{E}_{8} / \mathrm{SO}(16)$. We can also give the representations of $\mathrm{SO}(16)$ in terms of the vectors defined in (4.15). The roots of E_{8} decomposes then as 112 like $\pm l_{i} \pm l_{j}, i \neq j$ and 128 like $\frac{1}{2}\left(-l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+l_{6}+l_{7}+l_{8}\right)$ with an odd minus sign in the latter.

5.2. $E_{7} \times S U(2)$

This group will be recognised as the maximal subgroup of E_{8} when the second root from the left in the extended Coxeter-Dynkin diagram (figure 5) is deleted. Then the diagram splits into two disjoint diagrams where the single disconnected root is describing $\mathrm{SU}(2)$ and the remaining diagram is of E_{7}. The roots in figure 5 are organised in such a way that $\mathrm{SO}(8)$ represented by integral quaternions remains always as a subgroup of one of the factor groups besides $S U(9)$ and $S U(5) \times S U(5)$. Therefore in the construction of root lattices and the cosets formed by the maximal subgroups we will often use the adjoint, vector and spinor representations of $\mathrm{SO}(8)$. In this case $\mathrm{SU}(2)$ is represented by $\pm e_{5}$. Because $\mathrm{E}_{7} \times \mathrm{SU}(2)$ is maximal in E_{8} the roots of E_{7} must be orthogonal to e_{5} (e_{5} is represented by e_{2} on the right-hand side of the bracket). Therefore the roots of E_{7} are such that e_{2} on the right-hand sides of the brackets is missing. Therefore the 126 non-zero roots of E_{7} are nothing other than

$$
\begin{align*}
& \pm 1, \quad \pm e_{1}, \quad \pm e_{2}, \quad \pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right) \tag{5.1a}\\
& {\left[0,\left(\pm e_{1}, \pm e_{3}, \pm 1\right)\right]= \pm e_{4}, \pm e_{6}, \pm e_{7}} \tag{5.1b}\\
& {\left[A_{1}, \frac{1}{2}\left(\pm 1 \pm e_{1}\right)\right] \quad\left[A_{2}, \frac{1}{2}\left(\pm 1 \pm e_{3}\right)\right] \quad\left[A_{3}, \frac{1}{2}\left(\pm e_{3} \pm e_{1}\right)\right] .} \tag{5.1c}
\end{align*}
$$

Where A_{1}, A_{2}, and A_{3} are given by (3.12). We recall that (5.1a) together with A_{1}, A_{2} and A_{3} constitute the roots of F_{4}. One can show that ($5.1 b$) and the half-integral quaternions on the right-hand sides of brackets (5.1c) are the roots of $\operatorname{SP}(3)$. To check this we use the Dynkin diagram of $\operatorname{SP}(3)$ (figure 6) with the simple roots represented by

$$
\begin{equation*}
\alpha_{1}=\frac{1}{2}\left(-1+e_{1}\right) \quad \alpha_{2}=\frac{1}{2}\left(1-e_{3}\right) \quad \alpha_{3}=e_{3} . \tag{5.2}
\end{equation*}
$$

We obtain 18 non-zero roots of $\operatorname{SP}(3)$ by Weyl reflections which lead to

$$
\begin{equation*}
\pm 1, \quad \pm e_{1}, \quad \pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1}\right), \quad \frac{1}{2}\left(\pm e_{1} \pm e_{3}\right), \quad \frac{1}{2}\left(\pm 1 \pm e_{3}\right) . \tag{5.3}
\end{equation*}
$$

Here the first six roots are the long roots and the rest are the short roots. Thus ($5.1 a, b, c$) can be regarded as a pairing of the roots of F_{4} and $\mathrm{SP}(3)$ each of which is represented by quaternionic roots. This corresponds to the construction of E_{7} by 'matching' the F_{4} and $\mathrm{SP}(3)$ root system discussed in [5]. In the preceding section we have pointed out that there are several ways of linking two $S O(8)$ diagrams leading

Figure 6. Coxeter-Dynkin diagram of $\operatorname{SP}(3)$.
to a proper E_{8} diagram which gives the same set of roots of E_{8} in (4.14). This arbitrariness is reflected here in the choice of the roots of $S U(2)$ from the quaternionic units $\pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}$. Since we have already illustrated the case with the selection of e_{2} the remaining choices follow the same procedure. Therefore we may choose the roots of $\operatorname{SU}(2)$ four different ways and construct the roots of $\operatorname{SP}(3)$ accordingly and pair them with the unaltered roots of F_{4} in four different ways. This indicates that not only $\mathrm{E}_{7} \times \mathrm{SU}(2)$ can be embedded in E_{8} four possible ways but also E_{7} can be constructed four different ways by pairing the roots of F_{4} and $\mathrm{SP}(3)$. After the roots of $\mathrm{E}_{7} \times \mathrm{SU}(2)$ are subtracted from (4.14) the remaining roots transform as a (56,2)-dimensional representation of $\mathrm{E}_{7} \times \mathrm{SU}(2)$. They can be constructed by replacing the half-integral quaternions on the right-hand side of the brackets in (5.1c) by the terms $\frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)$, $\frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)$ and $\frac{1}{2}\left(\pm 1 \pm e_{2}\right)$ respectively. This will give 96 roots only:

$$
\begin{equation*}
\left[A_{1}, \frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)\right] \quad\left[A_{2}, \frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)\right] \quad\left[A_{3}, \frac{1}{2}\left(\pm 1 \pm e_{2}\right)\right] . \tag{5.4}
\end{equation*}
$$

When we add to these the 16 terms $\frac{1}{2}\left(\pm e_{7} \pm e_{4} \pm e_{5} \pm e_{6}\right)$ we obtain the right number 112 roots of the coset space of $E_{8} / E_{7} \times S U(2)$. We note also that the root lattice of $E_{7} \times S U(2)$ and hence its $(\mathbf{5 6}, \mathbf{2})$ dimensional representations are left invariant under the quaternion group.

Before discussing other maximal subgroups of E_{8} it is perhaps appropriate here to point out that if two sets of $S P(3)$ roots of (5.3) are paired we obtain the root lattice of $\operatorname{SO}(12)$. Since (4.14) restricts us we have the only choice for pairing as follows:

$$
\begin{align*}
& \pm 1, \quad \pm e_{1}, \quad \pm e_{3}, \quad\left[0,\left(\pm 1, \pm e_{1}, \pm e_{3}\right)\right]= \pm e_{7}, \pm e_{4}, \pm e_{6} \\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \frac{1}{2}\left(\pm 1 \pm e_{1}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{4} \pm e_{7}\right)} \tag{5.5}\\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{3}\right), \frac{1}{2}\left(\pm e_{1} \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm 1 \pm e_{3} \pm e_{4} \pm e_{6}\right)} \\
& {\left[\frac{1}{2}\left(\pm e_{1} \pm e_{3}\right), \frac{1}{2}\left(\pm 1 \pm e_{3}\right)\right]=\frac{1}{2}\left(\pm e_{1} \pm e_{3} \pm e_{6} \pm e_{7}\right) .}
\end{align*}
$$

These are the 60 non-zero roots of $\mathrm{SO}(12)$ occurring in the magic square of [7]. Here again we can construct the root lattice of $\mathrm{SO}(12)$ four different ways provided we remain in the same set of E_{8} roots of (4.14). Equation (5.5) is also invariant under the action of the quaternion group.

We will continue constructing the root systems of the magic square with integral octonions when they become relevant. Now we discuss the branching of the roots of E_{8} under $\mathrm{E}_{6} \times \mathrm{SU}(3)$.

5.3. $E_{6} \times S U(3)$

If we break up the extended Coxeter-Dynkin diagram in figure 5 by deleting e_{4} we obtain the disconnected diagrams for $\mathrm{SU}(3)$ and E_{6}. Using the Weyl reflections formula we obtain the roots of $\operatorname{SU}(3)$:

$$
\begin{align*}
& {\left[0, \pm e_{2}, \pm \frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right), \pm \frac{1}{2}\left(1-e_{1}+e_{2}-e_{3}\right)\right]} \\
& \quad= \pm e_{5}, \frac{1}{2}\left(e_{7}-e_{4}-e_{5}-e_{6}\right), \pm \frac{1}{2}\left(e_{7}-e_{4}+e_{5}-e_{6}\right) \tag{5.6}
\end{align*}
$$

The E_{6} roots must be orthogonal to the $\mathrm{SU}(3)$ roots. An immediate check shows that the half-integral quaternions orthogonal to those in (5.6) are the ones which do not include e_{2} and should be in the form

$$
\begin{equation*}
\pm\left[0, \frac{1}{2}\left(1+e_{1}\right)\right] \quad \pm\left[0, \frac{1}{2}\left(1+e_{3}\right)\right], \pm\left[0, \frac{1}{2}\left(e_{1}-e_{3}\right)\right] . \tag{5.7}
\end{equation*}
$$

It is obvious from figure 5 that E_{6} includes $\mathrm{SO}(8)$ as a subgroup. Therefore 24 integral quaternions are also roots of E_{6}. Since the weights of $8_{v}, 8_{s}$ and 8_{c} will be put on the left of the brackets they are orthogonal to the roots in (5.6) by definition. Therefore by pairing the weight of $8_{v}, 8_{s}$ and 8_{c} with those in (5.7) we get the remaining roots of E_{6}. Therefore 72 non-zero roots of E_{6} will be as follows:
$\pm 1, \quad \pm e_{1}, \quad \pm e_{2}, \quad \pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$
$A=\left[A_{1}, \pm \frac{1}{2}\left(1+e_{1}\right)\right], \quad B=\left[A_{3}, \pm \frac{1}{2}\left(e_{1}-e_{3}\right)\right], \quad C=\left[A_{2}, \pm \frac{1}{2}\left(1+e_{3}\right)\right]$
where A_{1}, A_{3}, A_{2} are given by (3.12). The 48 roots in (5.8b) can be split as two sets of 24 roots, one with a $(+)$ and the other with a $(-)$ sign. If we add the 24 roots in $(5.8 b)$ with $(+)$ signs to those in ($5.8 a$) we obtain the roots of F_{4}, a subgroup of E_{6}. All roots of F_{4} are of the same length in this case because they are embedded in E_{6}. Those 24 roots with (-) signs in (5.8 b) represent the non-zero roots of the 26 dimensional representation of F_{4}. When the roots of $\mathrm{E}_{6}(5.8 a, b)$ and the roots of $\mathrm{SU}(3)$ in (5.6) are subtracted from (4.14) the remaining integral octonions are the weights of the representation $(\mathbf{2 7}, \mathbf{3})+\left(27^{*}, \mathbf{3}^{*}\right)$. These roots will be discussed at the end of this section and in appendix 1.

A point of main interest is the symmetries of the E_{6} and $S U(3)$ roots under the action of the elements of the binary tetrahedral group which constitute also some part of E_{6}. Using ($3.11 a$) and (4.20) we can show that (5.6) and ($5.8 a, b$) are invariant under the quaternion group. This is not the only symmetry in this case. Indeed $\mathrm{E}_{6} \times \mathrm{SU}(3)$ has much more symmetry compared with the other maximal subgroups. Now we can show that (5.6) and (5.8) are invariant under the Abelian subgroup generated by the element V. Let us consider the $S U(3)$ roots. Since (5.6) is in the form [$0, N$], under the action of V it transforms as

$$
\begin{equation*}
V: \quad[0, N] \rightarrow\left[0, \bar{V}^{2} N\right]=[0,-V N] . \tag{5.9}
\end{equation*}
$$

In an explicit form we have

$$
\begin{array}{ll}
V: & {\left[0, \pm e_{2}\right] \rightarrow\left[0, \pm \frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right)\right]} \\
V: & {\left[0, \pm \frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right)\right] \rightarrow\left[0, \pm \frac{1}{2}\left(1-e_{1}+e_{2}-e_{3}\right)\right]} \tag{5.10}\\
V: & {\left[0, \pm \frac{1}{2}\left(1-e_{1}+e_{2}-e_{3}\right)\right] \rightarrow\left[0, \pm e_{2}\right] .}
\end{array}
$$

It is understood from this that the roots of $\operatorname{SU}(3)$ are rotated in the cyclic order under V so they constitute an invariant set. Now let us apply V on the roots of E_{6}. Equation ($5.8 a$) is invariant under V as it is the binary tetrahedral group. To see how V acts on ($5.8 b$) we use (4.20), ($3.11 b$) and table 1 again. We can show that the set of roots in (5.8b) transform as

$$
\begin{equation*}
V: \quad A \rightarrow B \rightarrow C \rightarrow A . \tag{5.11}
\end{equation*}
$$

It is amusing that the set of roots of E_{6} rotates in a cyclic order just like the $\operatorname{SU}(3)$ roots. Since the whole set of roots of E_{8} is invariant under any transformation of the binary tetrahedral group the roots in the coset $(27,3)+\left(27^{*}, 3^{*}\right)$ must also remain invariant under V.

As we have noted in the case of $\mathrm{E}_{7} \times \mathrm{SU}(2), \mathrm{SU}(3)$ can also be represented by four different sets of roots each containing one quaternionic unit $\pm e_{a}(a=0,1,2,3)$. If we wish to construct another set of roots for $\mathrm{E}_{6} \times \mathrm{SU}(3)$ we may start with, say, $\pm e_{3}$ instead of $\pm e_{2}$ and apply V on $\pm e_{3}$ in the same way we have done in (5.10) and obtain another V-invariant $\mathrm{SU}(3)$ root system. Then we construct the E_{6} roots in turn in a similar
fashion as described in (5.7). By following this procedure we obtain four possible decompositions of the root lattice of E_{8} with respect to $\mathrm{E}_{6} \times \mathrm{SU}(3)$; in each case V-invariance is perserved. Had we required the invariances under S, T or U in such a decomposition we would also have been able to do so. In the latter cases one selects the quaternionic unit $\pm e_{a}$ as one of the simple root of $S U(3)$ and apply any one of S, T or U to get the S, T, U-invariant $\mathrm{SU}(3)$ root systems. Following the same procedure for V we may obtain S, T, U-invariant E_{6} root systems. In each case there are always four possibilities. But one should notice that there does not exist two different invariances in a given decomposition. To summarise, there are 16 different ways of decomposing the root system of E_{8} under $\mathrm{E}_{6} \times \mathrm{SU}(3)$. In each case the action of the quaternion group leaves the decomposition invariant. We have given 16 different decompositions of integral octonions in appendix 1.

Now we come back to the magic square obtained by matching the root lattices of $\operatorname{SU}(3), \mathrm{SP}(3)$ and F_{4}. We have already shown that $\left[\mathrm{F}_{4}, \mathrm{~F}_{4}\right],\left[\mathrm{F}_{4}, \mathrm{SP}(3)\right]$ and $[S P(3), S P(3)]$ give the root lattices of E_{8}, E_{7} and $\mathrm{SO}(12)$ respectively. Now we construct the roots of $\operatorname{SU}(3)$ using half-integral quaternions of length one when each root is multiplied by $\sqrt{2}$. It is not possible to construct $\mathrm{SU}(3)$ root system either by Gaussian integers or 'half-integral' complex numbers of ($3.1 a, b$). Therefore we should use a subset of 'half-integral' quaternions. Let us choose the simple roots of $\mathrm{SU}(3)$ as $\frac{1}{2}\left(1+e_{1}\right)$ and $\frac{1}{2}\left(e_{2}-e_{1}\right)$. The root system derived from these simple roots is given by

$$
\begin{equation*}
\pm \frac{1}{2}\left(1+e_{1}\right), \quad \pm \frac{1}{2}\left(e_{2}-e_{1}\right), \quad \pm \frac{1}{2}\left(1+e_{2}\right) \tag{5.12}
\end{equation*}
$$

Now we take two sets of roots of (5.12) and pair them in the usual way. Since this pairing will furnish a root system in integral octonions it should remain in (4.14). Then we have only one possibility of pairing two such sets in the following form:

$$
\begin{align*}
& {\left[\pm \frac{1}{2}\left(1+e_{1}\right), \pm \frac{1}{2}\left(1+e_{1}\right)\right] \quad\left[\pm \frac{1}{2}\left(e_{2}-e_{1}\right), \pm \frac{1}{2}\left(1+e_{2}\right)\right]} \tag{5.13}\\
& \left.\left[\pm \frac{1}{2}\left(1+e_{2}\right)\right], \pm \frac{1}{2}\left(e_{2}-e_{1}\right)\right] .
\end{align*}
$$

These 12 integral octonions represent the root system of $\mathrm{SU}(3) \times \mathrm{SU}(3)$. What remains is a pairing of the roots of $\operatorname{SU}(3)$ with those of $\operatorname{SP}(3)$ with which the magic square will be completed. Thus we pair (5.3) with (5.12) provided the integral octonions so obtained remain in (4.14). In this case we are free to put (5.3) or (5.12) on the left of the bracket which will lead to two independent representations of the emerging root system. If we prefer (5.3) on the left and (5.12) on the right we obtain

$$
\begin{align*}
& {\left[\left(\pm 1, \pm e_{1}, \pm e_{3}\right), 0\right]=\left(\pm 1, \pm e_{1}, \pm e_{3}\right)} \\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{1}\right), \pm \frac{1}{2}\left(1+e_{1}\right)\right]} \\
& {\left[\frac{1}{2}\left(\pm e_{1} \pm e_{3}\right), \pm \frac{1}{2}\left(e_{2}-e_{1}\right)\right]} \tag{5.14}\\
& {\left[\frac{1}{2}\left(\pm 1 \pm e_{3}\right), \pm \frac{1}{2}\left(1+e_{2}\right)\right] .}
\end{align*}
$$

These integral octonions are nothing but $6+8 \times 3=30$ non-zero roots of $\operatorname{SU}(6)$. To summarise, we obtained the GNORS magic square in terms of integral octonions.

	SU(3)	SP(3)	F_{4}
SU(3)	$\mathrm{SU}(3) \times \mathrm{SU}(3)$	SU(6)	E_{6}
SP(3)	SU(6)	SO(12)	E_{7}
F_{4}	E_{6}	E_{7}	E_{8}

In addition to this magic square we have also found

$$
[\mathrm{SU}(2), \mathrm{SU}(2)]=\mathrm{SO}(4) \quad[\mathrm{SP}(2), \mathrm{SP}(2)]=\mathrm{SO}(8) \quad[\mathrm{SO}(9), \mathrm{SO}(9)]=\mathrm{SO}(16)
$$

5.4. $S U(9)$

The Coxeter-Dynkin diagram of $\mathrm{SU}(9)$ can be obtained from figure 5 by deleting the root e_{3} corresponding to $l_{6}+l_{7}$ in (4.17). Then 72 non-zero roots of the adjoint representation of $\operatorname{SU}(9)$ are given by the integral octonions of the form

$$
\begin{equation*}
l_{i}-l_{j} \quad(i \neq j=0,1, \ldots, 8) \tag{5.15}
\end{equation*}
$$

and the remaining 168 roots of E_{8} correspond to the weights of $84+84^{*}$ representations of $\operatorname{SU}(9)$. They are given by

$$
\begin{equation*}
\pm\left(l_{i}+l_{j}+l_{k}-l_{0}\right) \quad(i \neq j \neq k=0,1, \ldots, 8) \tag{5.16}
\end{equation*}
$$

We have not seen any symmetry leaving the root lattice of $\operatorname{SU(9)}$ invariant. This is obvious since one element e_{3} of the binary tetrahedral group is left out of the root lattice of $\mathrm{SU}(9)$.

5.5. $S U(5) \times S U(5)$

In figure 5 we delete the root e_{1} to obtain two disconnected Coxeter-Dynkin diagrams of $\operatorname{SU}(5) \times \operatorname{SU}(5)$. No symmetry is left preserving the root system of $\mathrm{SU}(5) \times \operatorname{SU}(5)$ since e_{1} is taken out of the group structure of the binary tetrahedral group. The adjoint of $\mathrm{SU}(5) \times \mathrm{SU}(5)$ is represented by $20+20=40$ integral octonions as follows:

$$
\begin{align*}
& {[20,0]: } \pm\left[\begin{array}{rr}
\frac{1}{2}\left(e_{3}-e_{2}\right) \\
\frac{1}{2}\left(1+e_{1}\right) & -\frac{1}{2}\left(e_{3}+e_{2}\right) \\
\frac{1}{2}\left(1-e_{1}\right) \\
\frac{1}{2}\left(1+e_{1}\right)
\end{array}\right] \\
& \pm\left[\begin{array}{r}
\frac{1}{2}\left(1+e_{1}+e_{2}-e_{3}\right) \\
0 \\
\frac{1}{2}\left(1+e_{1}-e_{2}-e_{3}\right) \\
\frac{1}{2}\left(1-e_{1}+e_{2}-e_{3}\right) \\
\frac{1}{2}\left(1-e_{1}-e_{2}-e_{3}\right)
\end{array}\right] \tag{5.17}\\
& {\left[0, \pm e_{1}\right] } \\
& {[0,20]: } \pm\left[\begin{array}{ll}
0,
\end{array}\right] \tag{5.18}\\
& \pm e_{2}, \quad \pm e_{3}, \\
& \frac{1}{2}\left(e_{3}-e_{1}\right) \\
&-\frac{1}{2}\left(e_{3}+e_{1}\right) \frac{1}{2}\left(1-e_{1} \pm e_{2} \pm e_{3}\right) .
\end{align*}
$$

The remaining integral octonions of (4.14) transform as $\left(5,10^{*}\right)+\left(5^{*}, 10\right)+(10,5)+$ $\left(10^{*}, 5^{*}\right)$ under $\operatorname{SU}(5) \times \operatorname{SU}(5)$.

5.6. $F_{4} \times G_{2}$

This is a special subgroup of E_{8}, F_{4} and G_{2} are also exceptional groups with the following properties.
G_{2} is the automorphism group of octonions and F_{4} is the automorphism group of the exceptional Jordan algebra of 3×3 octonionic Hermitian matrices. G_{2} is particularly interesting because one of its discrete subgroup leaves the integral octonions invariant. This point deserves further investigation; however, it will not be discussed here. Our main purpose here is to decompose 240 integral octonions under $F_{4} \times G_{2}$.

As we have explained before we may split ($5.8 b$) into two sets of 24 integral octonions. Equation ($5.8 b$) can be written in the form [$a, \pm b$] where a represents the totality of A_{1}, A_{2} and A_{3} on the left and b those on the right. If we combine [a, b] with integral octonions of ($5.8 a$) we obtain 48 roots of F_{4}. The roots of G_{2} are found by adding $\pm e_{4}, \pm e_{6}, \pm e_{7}$ to the roots of $\mathrm{SU}(3)$ in (5.6). Hence the roots of G_{2} are
$\pm e_{4}, \pm e_{5}, \pm e_{6}, \pm e_{7}, \quad \pm \frac{1}{2}\left(e_{7}-e_{4}-e_{5}-e_{6}\right), \quad \pm \frac{1}{2}\left(e_{7}-e_{4}+e_{5}-e_{6}\right)$.
The remaining roots of E_{8} can be classified as the representations of $\mathrm{SO}(8) \times \mathrm{SU}(3)$ a subgroup of $F_{4} \times G_{2}$:

$$
\begin{align*}
&\left(\mathbf{8}_{\mathrm{v}}, \mathbf{3}\right)+\left(\mathbf{8}_{\mathrm{v}}, \mathbf{3}^{*}\right): {\left[A_{1}, \pm \frac{1}{2}\left(1-e_{1}\right)\right] } \\
& {\left[A_{1}, \pm \frac{1}{2}\left(\pm e_{2} \pm e_{3}\right)\right] } \tag{5.20a}\\
&\left(\mathbf{8}_{\mathrm{s}}, \mathbf{3}\right)+\left(\mathbf{8}_{\mathrm{s}}, \mathbf{3}^{*}\right): {\left[A_{3}, \pm \frac{1}{2}\left(e_{1}+e_{3}\right)\right] } \\
& {\left[A_{3}, \frac{1}{2}\left(\pm 1 \pm e_{2}\right)\right] } \tag{5.20b}\\
&\left(\mathbf{8}_{\mathrm{c}}, \mathbf{3}\right)+\left(\mathbf{8}_{\mathrm{c}}, \mathbf{3}^{*}\right): {\left[A_{2}, \pm \frac{1}{2}\left(1-e_{3}\right)\right] } \\
& {\left[A_{2}, \pm \frac{1}{2}\left(\pm e_{1} \pm e_{2}\right)\right] } \tag{5.20c}\\
& 2\left[(\mathbf{1}, \mathbf{3})+\left(\mathbf{1}, \mathbf{3}^{*}\right)\right]: \pm \frac{1}{2}\left(e_{7}+e_{4}+e_{5}+e_{6}\right), \\
& \pm \frac{1}{2}\left(e_{7}+e_{4}+e_{5}-e_{6}\right) \\
& \pm \frac{1}{2}\left(e_{7}-e_{4}+e_{5}+e_{6}\right), \tag{5.20d}\\
& \pm \frac{1}{2}\left(e_{7}-e_{4}+e_{4}-e_{5}+e_{6}\right), \\
& \pm \frac{1}{2}\left(e_{7}+e_{4}-e_{5}-e_{6}\right) .
\end{align*}
$$

There are $3 \times 48+4 \times 3=156$ integral octonions in ($5.20 a, b, c, d$). When we add this to 24 non-zero roots in the form $[a,-b]$ of $(5.8 b)$ we obtain 180 roots of the coset space $E_{8} / F_{4} \times G_{2}$. If this number is added to $48+12$ non-zero roots of F_{4} and G_{2} we get back 240 integral octonions of E_{8}. This decomposition of E_{8} is also invariant under the quaternion group.

6. Discussions and conclusion

The method we have described for the constructions of the root systems of $\mathrm{SO}(4)$, $\mathrm{SP}(2), \mathrm{SO}(8), \mathrm{F}_{4}$ and E_{8} from that of $\mathrm{SU}(2)$ is very simple and perhaps useful. A pair of elements [a, b] belonging to a division algebra furnished with a product rule is independent of the particular choices of the imaginary units of the corresponding division algebras. Therefore it provides a unified way of treating the root systems of the corresponding Lie algebras. This is particularly useful in the case of E_{8} since the choices of the imaginary units of octonions are somewhat arbitrary.

The root lattices expressed in terms of integral elements of the corresponding division algebras have overwhelming properties, namely they correspond to certain discrete groups or algebras. These aspects single out the groups $\mathrm{SU}(2), \mathrm{SU}(2) \times \mathrm{SU}(2)$, $\mathrm{SO}(8)$ and E_{8} and also $\mathrm{SP}(2), \mathrm{SO}(9)$ and F_{4} slightly less so. One feature of this method is the possibility of classification of the maximal subgroups of E_{8} under the actions of the subsets of the discrete subgroup of $\operatorname{SU}(2)$ of 24 integral quaternions.

We have also noted that the root system of F_{4} is invariant under the binary tetrahedral group. There exists an Abelian subgroup of the binary tetrahedral group generated by an element S which has been used by GNORS to determine the cocyles arising in the vertex construction of a level one representation of the affine F_{4} algebra. It is perhaps more interesting to use the full group invariance in such a problem and check what effect will result.

Another interesting aspect is the classification of the embeddings of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ in E_{8} respecting various invariances of Abelian subgroups generated by S, T, U and V. This may have some connections with orbifold compactifications of the heterotic string if the discrete subgroups of $\operatorname{SU}(2)$ with 24 or 48 elements are embedded in one of its maximal subgroups of E_{8}.

We have also constructed the root lattices of the groups of the GNOR magic square in terms of integral octonions. Integral elements of division algebras are also proposed for a new description of lattice gauge fields in which the fundamental object is a discrete version of a principle fibre bundle [18].

The roots of E_{8} in the form [A_{1}, A_{1}] in (4.5) is the ($\mathbf{8}_{\mathrm{v}}, \mathbf{8}_{\mathrm{v}}$) representation of $\mathrm{SO}(8) \times \mathrm{SO}(8)$. It was clear from the discussion following ($4.9 f$) that all the roots of E_{8} can be generated by squaring $\left[A_{1}, A_{1}\right]$. There is a close correspondence between this structure and the construction of the level one representation of the affine E_{8} algebra [19].

Acknowledgments

One of us (MK) would like to thank Professor Abdus Salam, the International Atomic Energy Agency and Unesco for hospitality at the International Centre for Theoretical Physics, Trieste and also Professors Feza Gürsey and A O Barut for valuable discussions. We also acknowledge the partial support of the Scientific and Technical Research Council of Turkey and the Turan Barut Foundation of Physics.

Appendix 1. Invariant decompositions of the E_{8} root lattice under $\mathrm{E}_{6} \times \mathrm{SU}(3)$

As we have explained in $\S 5$ there are four different embeddings of $E_{6} \times \operatorname{SU}(3)$ in E_{8}. In each embedding one of the Abelian subgroups S, T, U and V of the binary tetrahedral group is preserved. In each embedding there are four possible choices for the roots of $S U(3)$ and correspondingly for E_{6}. We give one invariant embedding in an explicit form and explain how it should be understood. Since $S O(8) \subset E_{6}$ and $S U(3) \subset S O(8)$ we take the advantage of pairing of the weights of $8_{v}, 8_{s}, 8_{c}$ with the 'half integral' quaternions orthogonal to the $\mathrm{SU}(3)$ roots. In table 2 we give S invariant embeddings of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ in E_{8}.

Table 2 should be understood as follows. If the roots of $\mathrm{SU}(3)$ are chosen as

$$
\begin{align*}
& {[0, \pm 1]= \pm e_{7} \quad[0, \pm S]= \pm \frac{1}{2}\left(e_{7}+e_{4}+e_{5}+e_{6}\right)} \\
& {[0, \pm \bar{S}]= \pm \frac{1}{2}\left(e_{7}-e_{4}-e_{5}-e_{6}\right)} \tag{A1.1}
\end{align*}
$$

then the corresponding E_{6} roots are

$$
\begin{align*}
& \pm 1, \quad \pm e_{1}, \quad \pm e_{2}, \quad \pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right) \\
& {\left[A_{1}, \pm \frac{1}{2}\left(e_{2}-e_{3}\right)\right], \quad\left[A_{2}, \pm \frac{1}{2}\left(e_{1}-e_{2}\right)\right], \quad\left[A_{3}, \pm \frac{1}{2}\left(e_{3}-e_{1}\right)\right]} \tag{A1.2}
\end{align*}
$$

where A_{1}, A_{2} and A_{3} are given by (3.12). The roots of E_{8} in the representations $(27,3)+\left(27^{*}, 3^{*}\right)$ of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ are obtained by pairing the elements in columns labelled by $1,2,3$ with the corresponding elements in the first unlabelled elements, i.e. with three zeros in the case of $\mathrm{SU}(3)$ roots and with A_{1}, A_{2} and A_{3} in the case of E_{6} roots. Under the action of S, the roots in (A1.1) and (A1.2) are rotated in cyclic order from

Table 2. S-invariant embeddings of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ in E_{8}.

	0	1	2	3
SU(3) roots:	$[0, \pm 1$,	$\pm e_{1}$,	$\pm e_{2}$,	$\left.\pm e_{3}\right]$
	$[0, \pm S$,	$\pm U$,	$\pm \bar{T}$,	$\pm \bar{U}]$
	$[0, \pm \bar{S}$,	$\pm \vec{V}$,	$\pm V$,	$\pm T]$
E_{6} roots:	$\left[A_{1}, \pm \frac{1}{2}\left(e_{2}-e_{3}\right), \pm \frac{1}{2}\left(e_{2}+e_{3}\right), \pm \frac{1}{2}\left(1-e_{1}\right), \pm \frac{1}{2}\left(1+e_{1}\right)\right]$			
	$\left[A_{2}, \pm \frac{1}{2}\left(e_{1}-e_{2}\right), \pm \frac{1}{2}\left(1-e_{3}\right), \pm \frac{1}{2}\left(1+e_{3}\right), \pm \frac{1}{2}\left(e_{1}+e_{2}\right)\right]$			
	$\left[A_{3}, \pm \frac{1}{2}\left(e_{3}-e_{1}\right), \pm \frac{1}{2}\left(1+e_{2}\right), \pm \frac{1}{2}\left(e_{3}+e_{1}\right), \pm \frac{1}{2}\left(1-e_{2}\right)\right]$			
	$\pm 1, \pm e_{1}$,	$\pm e_{2}, \pm e_{3}$,	$\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$	

Table 3. T-invariant embeddings of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ in E_{8}.

	0	1	2	3
SU(3) roots:	$[0, ~ \pm 1$,	$\pm e_{1}$,	$\pm e_{2}$,	$\left.\pm e_{3}\right]$
	$[0$,	$\pm \bar{T}$,	$\pm V$,	$\pm U$,
	$[0$,	$\pm \bar{T}$,	$\pm \bar{U}$,	$\pm S$,
E_{6} roots:	$\left[A_{1}, \pm \frac{1}{2}\left(e_{2}-e_{3}\right), \pm \frac{1}{2}\left(e_{2}+e_{3}\right), \pm \frac{1}{2}\left(1-e_{1}\right), \pm \frac{1}{2}\left(1+e_{1}\right)\right]$			
	$\left[A_{3}, \pm \frac{1}{2}\left(e_{3}+e_{1}\right), \pm \frac{1}{2}\left(1-e_{2}\right), \pm \frac{1}{2}\left(e_{1}-e_{3}\right), \pm \frac{1}{2}\left(1+e_{2}\right)\right]$			
	$\left[A_{2}, \pm \frac{1}{2}\left(e_{1}+e_{2}\right), \pm \frac{1}{2}\left(1+e_{3}\right), \pm \frac{1}{2}\left(1-e_{3}\right), \pm \frac{1}{2}\left(e_{1}-e_{2}\right)\right]$			
	± 1,	$\pm e_{1}$,	$\pm e_{2}$,	$\pm e_{3}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$

Table 4. U-invariant embeddings of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ in E_{8}.

	0	1	2	3
SU(3) roots:	$[0, \pm 1$,	$\pm e_{1}$,	$\pm e_{2}$,	$\left.\pm e_{3}\right]$
	$[0, \pm U$,	$\pm \bar{S}$,	$\pm T$,	$\pm V]$
	$[0, \pm \bar{U}$,	$\pm \bar{T}$,	$\pm \bar{V}$,	$\pm S]$
E_{6} roots:	$\left[A_{1}, \pm \frac{1}{2}\left(e_{2}+e_{3}\right), \pm \frac{1}{2}\left(e_{2}-e_{3}\right), \pm \frac{1}{2}\left(1+e_{1}\right), \pm \frac{1}{2}\left(1-e_{1}\right)\right]$			
	$\left[A_{3}, \pm \frac{1}{2}\left(e_{3}-e_{1}\right), \pm \frac{1}{2}\left(1+e_{2}\right), \pm \frac{1}{2}\left(e_{3}+e_{1}\right), \pm \frac{1}{2}\left(1-e_{2}\right)\right]$			
	$\left[A_{2}, \pm \frac{1}{2}\left(e_{1}+e_{2}\right), \pm \frac{1}{2}\left(1+e_{3}\right), \pm \frac{1}{2}\left(1-e_{3}\right), \pm \frac{1}{2}\left(e_{1}-e_{2}\right)\right]$			
	$\pm 1, \pm e_{1}, \pm e_{2}, \pm e_{3}$,	$\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$		

Table 5. V-invariant embeddings of $\mathrm{E}_{6} \times \mathrm{SU}(3)$ in E_{8}.

	0	1	2	3
SU(3) roots:	$[0, ~ \pm 1$,	$\pm e_{1}$,	$\pm e_{2}$,	$\left.\pm e_{3}\right]$
	$[0, \pm \bar{V}$,	$\pm T$,	$\pm \bar{S}$,	$\pm U]$
	$[0, \pm \bar{V}$,	$\pm S$,	$\pm \bar{U}$,	$\pm \bar{T}]$
E_{6} roots:	$\left[A_{1}, \pm \frac{1}{2}\left(e_{2}+e_{3}\right), \pm \frac{1}{2}\left(e_{2}-e_{3}\right), \pm \frac{1}{2}\left(1+e_{1}\right), \pm \frac{1}{2}\left(1-e_{1}\right)\right]$			
	$\left[A_{3}, \pm \frac{1}{2}\left(e_{3}+e_{1}\right), \pm \frac{1}{2}\left(1-e_{2}\right), \pm \frac{1}{2}\left(e_{3}-e_{1}\right), \pm \frac{1}{2}\left(1+e_{2}\right)\right]$			
	$\left[A_{2}, \pm \frac{1}{2}\left(e_{1}-e_{2}\right), \pm \frac{1}{2}\left(1-e_{3}\right), \pm \frac{1}{2}\left(1+e_{3}\right), \pm \frac{1}{2}\left(e_{1}+e_{2}\right)\right]$			
	$\pm 1, \quad \pm e_{1}, \pm e_{2}$,	$\pm e_{3}$,	$\frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{2} \pm e_{3}\right)$	

top to bottom so that each column remains invariant under S. Similarly the elements in columns 1, 2, 3 are rotated to each other in their own sectors. Therefore coset structure is preserved by S. Thus whenever one column is preferred for the roots for $S U(3)$ and E_{6} the other columns serve for the coset space. This displays the four different S-invariant decompositions of E_{8} under $\mathrm{E}_{6} \times \mathrm{SU}(3)$. Similar tables for T, U and V can be made as in tables 3,4 and 5 .

Appendix 2. Seven modules of integral octonions

In this appendix we explain how seven distinct root systems of E_{8} each of which consists of 240 integral octonions can be constructed. Each module is closed under multiplication. We have already shown in (4.12) that 240 integral octonions describing the root lattice of E_{8} are given by

$$
\begin{equation*}
240=\left[A_{0}, 0\right]+\left[0, A_{0}\right]+\left[A_{1}, A_{1}\right]+\left[A_{2}, A_{3}\right]+\left[A_{3}, A_{2}\right] \tag{A2.1}
\end{equation*}
$$

where $A_{i}(i=0,1,2,3)$ are defined by (3.12) and (4.5). This root system corresponds to the Coxeter-Dynkin diagram of E_{8} in figure 5 . Since labelling of the vector, spinor and antispinor representations of $\mathrm{SO}(8)$ is arbitrary we could have started with a labelling of the vector representation by the set of weights A_{2} and/or A_{3}. Then this would lead to two different sets of integral octonions each of which is equally describing the root lattice of E_{8}. They would be given by

$$
\begin{align*}
& 240=\left[A_{0}, 0\right]+\left[0, A_{0}\right]+\left[A_{2}, A_{2}\right]+\left[A_{3}, A_{1}\right]+\left[A_{1}, A_{3}\right] \tag{A2.2}\\
& 240=\left[A_{0}, 0\right]+\left[0, A_{0}\right]+\left[A_{3}, A_{3}\right]+\left[A_{1}, A_{2}\right]+\left[A_{2}, A_{1}\right] . \tag{A2.3}
\end{align*}
$$

These sets of integral octonions correspond to different assignments of the simple roots in figure 5. Equation (A2.2), e.g., can be obtained from a diagram where the two diagrams of $\mathrm{SO}(8)$ in figure 4 are rotated, one in the clockwise direction and the other in the counterclockwise direction such that e_{5} and e_{2} are connected to a root of the form $\frac{1}{2}\left(-1-e_{2}-e_{5}-e_{7}\right)=-\left[\frac{1}{2}\left(1+e_{2}\right), \frac{1}{2}\left(1+e_{2}\right)\right]$. To obtain a similar diagram of E_{8} we delete the root e_{4} in the new diagram and add the root $\frac{1}{2}\left(-1-e_{3}-e_{4}-e_{7}\right)=$ $-\left[\frac{1}{2}\left(1+e_{3}\right), \frac{1}{2}\left(1+e_{1}\right)\right]$ to the right end of the diagram which will be connected to e_{3}. For (A2.3) a similar procedure can be followed. We should note that the roots [$A_{0}, 0$] and $\left[0, A_{0}\right]$ are unaltered under these changes. We also note that a term $[M, N]$ in (A2.1) and (A2.3) should be understood as $[M, N]=M+e_{7} N$.

The remaining four modules of 240 integral octonions can be obtained replacing associative triad $e_{1} e_{2} e_{3}$ by other triads. Since there are seven associative triads 123, $246,435,367,651,572,714$ one can start with any one of them. Let us choose the triads involving e_{1} besides $e_{1} e_{2} e_{3}$. Then we obtain the remaining four modules. Actually we obtain three modules for 651 and three modules for 714; however, in each case one module coincides with the one already constructed. When we choose e_{6}, e_{5}, e_{1} as our new quaternionic units with $e_{4} e_{6}=e_{2}, e_{4} e_{5}=e_{3}, e_{4} e_{1}=e_{7}$ we first construct SO (8) roots and eight-dimensional representations with e_{6}, e_{5} and e_{1}. Then we construct integral octonions with new quaternionic units in which case e_{4} plays the role of independent imaginary unit. Let us denote A_{0}^{\prime} representing 24 integral quaternions generated by e_{6}, e_{5}, e_{1} :

$$
\begin{equation*}
A_{0}^{\prime}: \pm 1, \pm e_{6}, \pm e_{5}, \pm e_{1}, \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{5} \pm e_{6}\right) \tag{A2.4}
\end{equation*}
$$

Let the vector, spinor and antispinor representations of $\mathrm{SO}(8)$ be given by the sets of weights

$$
\begin{array}{lll}
\frac{A_{6}}{2}\left(\pm 1 \pm e_{6}\right) & A_{1} & A_{5} \tag{A2.5}\\
\frac{1}{2}\left(\pm 1 \pm e_{1}\right) & \frac{1}{\frac{1}{2}\left(\pm 1 \pm e_{5}\right)} \\
\frac{1}{2}\left(\pm e_{5} \pm e_{1}\right) & \frac{1}{2}\left(\pm e_{6} \pm e_{5}\right) & \frac{1}{2}\left(\pm e_{1} \pm e_{6}\right) .
\end{array}
$$

With (A2.4) and (A2.5) we can construct the following three sets of modules of integral octonions:

$$
\begin{align*}
& 240=\left[A_{0}^{\prime}, 0\right]+\left[0, A_{0}^{\prime}\right]+\left[A_{6}, A_{6}\right]+\left[A_{1}, A_{5}\right]+\left[A_{5}, A_{1}\right] \tag{A2.6}\\
& 240=\left[A_{0}^{\prime}, 0\right]+\left[0, A_{0}^{\prime}\right]+\left[A_{5}, A_{5}\right]+\left[A_{6}, A_{1}\right]+\left[A_{1}, A_{6}\right] \tag{A2.7}\\
& 240=\left[A_{0}^{\prime}, 0\right]+\left[0, A_{0}^{\prime}\right]+\left[A_{1}, A_{1}\right]+\left[A_{5}, A_{6}\right]+\left[A_{6}, A_{5}\right] . \tag{A2.8}
\end{align*}
$$

Here (A2.8) coincides with (4.14) so that this module is not independent. We note that the brackets in (A2.6,7,8) should be understood as follows:

$$
[M, N]=M+e_{4} N
$$

In the case of the quaternionic units (e_{7}, e_{1}, e_{4}), e_{5} is the independent imaginary unit satisfying

$$
e_{5} e_{7}=e_{2} \quad e_{5} e_{1}=e_{6} \quad e_{5} e_{4}=e_{3}
$$

In this case we denote 24 integral quaternions by $A_{0}^{\prime \prime}$ given by

$$
\begin{equation*}
A_{0}^{\prime \prime}: \quad \pm 1, \quad \pm e_{7}, \quad \pm e_{1}, \quad \pm e_{4}, \quad \frac{1}{2}\left(\pm 1 \pm e_{1} \pm e_{4} \pm e_{7}\right) \tag{A2.9}
\end{equation*}
$$

The weights of vector, spinor and antispinor representation can be written as

$$
\begin{array}{lll}
\frac{A_{7}}{} & A_{4} & A_{1} \tag{A2.10}\\
\cline { 1 - 1 }\left(\pm 1 \pm e_{7}\right) & \frac{1}{2}\left(\pm 1 \pm e_{4}\right) & \frac{1}{2}\left(\pm 1 \pm e_{1}\right) \\
\frac{1}{2}\left(\pm e_{1} \pm e_{4}\right) & \frac{1}{2}\left(\pm e_{7} \pm e_{1}\right) & \frac{1}{2}\left(\pm e_{4} \pm e_{7}\right) .
\end{array}
$$

Using (A2.9) and (A2.10) we construct three more modules of integral octonions two of which are independent:

$$
\begin{align*}
& 240=\left[A_{0}^{\prime \prime}, 0\right]+\left[0, A_{0}^{\prime \prime}\right]+\left[A_{7}, A_{7}\right]+\left[A_{4}, A_{1}\right]+\left[A_{1}, A_{4}\right] \tag{A2.11}\\
& 240=\left[A_{0}^{\prime \prime}, 0\right]+\left[0, A_{0}^{\prime \prime}\right]+\left[A_{1}, A_{1}\right]+\left[A_{7}, A_{4}\right]+\left[A_{4}, A_{7}\right] \tag{A2.12}\\
& 240=\left[A_{0}^{\prime \prime}, 0\right]+\left[0, A_{0}^{\prime \prime}\right]+\left[A_{4}, A_{4}\right]+\left[A_{1}, A_{7}\right]+\left[A_{7}, A_{1}\right] . \tag{A2.13}
\end{align*}
$$

Here (A2.12) coincides with (4.14), therefore it is not independent. The brackets here should be understood as $[M, N]=M+e_{5} N$.

Therefore seven independent modules of integral octonions are (A2.1), (A2.2), (A2.3), (A2.6), (A2.7), (A2.11) and (A2.13). We have already noted that these modules can also be obtained replacing the imaginary units in (A2.1) by successive applications of the changes of the units in the cyclic order $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 1$. In each module one of the imaginary unit plays an essential role by representing the vector representations $\left(\mathbf{8}_{\mathrm{v}}, \boldsymbol{8}_{\mathrm{v}}\right)$ in the form $\left[\boldsymbol{A}_{i}, \boldsymbol{A}_{i}\right](i=1,2, \ldots, 7)$ in a given module.

References

[1] Green M B, Schwarz J H and Witten E 1987 Superstring Theory vol I, II (Cambridge: Cambridge University Press)
[2] Kugo T and Townsend P K 1983 Nucl. Phys. B 221357
Sudbery A 1984 J. Phys. A: Math. Gen. 17939
Gursey F 1987 Supergroups in critical dimensions and division algebras, Invited lecture presented at the 5th Capri Symp. on Symmetry in Fundamental Interactions Yale preprint
Fairlie D B and Manogue C 1986 Phys. Rev. D 341832
Evans J M 1988 Nucl. Phys. B 29892
Corrigan E and Hollowood T J 1988 Phys. Lett. 203B 47
Foot R and Joshi G C 1987 Phys. Lett. 199B 203
[3] Gursey F 1988 Yale preprint YCTP-P1-88; 1987 Mod. Phys. Lett. A 2967
[4] Coxeter H S M 1946 Duke Math. J. 13561
Dickson L E 1919 Ann. Math. 220155
Koca M 1986 ICTP preprint IC/86/224 unpublished; 1987 2nd Regional Conf. in Mathematical Physics, Adana
[5] Lerche W and Schellekens A N 1987 CERN-TH.4925/87
Schellekens A N 1988 CERN-TH.4945/88
Lerche W, Schellekens A N and Warner N P 1988 Phys. Rep. in press
[6] Hamidi S and Vafa C 1987 Nucl. Phys. B 279465
Dixon L, Friedan D, Martinec E and Shenker S 1987 Nucl. Phys. B 38213
Ibanez L E, Nilles H P and Quevedo F 1987 Phys. Lett. 187B 25
Ibanez L E, Kim J E, Nilles H P and Quevedo F 1987 Phys. Lett. 191B 282
Casas J A and Munoz C 1988 Phys. Lett. 214B 63
[7] Goddard P, Nahm W, Olive D I, Ruegg H and Schwimmer A 1986 Commun. Math. Phys, 107, 179; 1987 Commun. Math. Phys. 112385
[8] Dixon L, Harvey J A, Vafa C and Witten E 1985 Nucl. Phys. B 261 678; 1986 Nucl. Phys. B 274285 Bailin D, Love A and Thomas S 1988 Nucl. Phys. B 29875
[9] Hurwitz A 1933 Math. Werke 2303
[10] Schafer R D 1966 An introduction to non-associative algebras (New York: Academic)
[11] Gunaydin M and Gursey F 1973 J. Math. Phys. 141651
[12] Coxeter H S M 1948 Regular Polytopes (London: Methuen)
[13] Slansky R 1981 Phys. Rep. 791
[14] Goddard P and Olive D 1986 Int. J. Mod. Phys. A 1303
[15] Koca M 1981 Phys. Rev. D 24 2636, 2645
[16] Wybourne B G 1974 Classical Groups for Physicists (New York: Wiley)
McKay W G and Patera J 1981 Tables of dimensions, indices, and Branching rules for representations of simple Lie Algebras (New York: Dekker)
[17] Freudenthal H 1962 Advances in Mathematics vol I, p 145
Tits J 1962 Proc. Colloq. Utrecht p 175
Rozenfeld B A 1962 Proc. Colloq. Utrecht p 135
[18] Manton N S 1987 Commun. Math. Phys. 113341
[19] Goddard P, Olive D and Schwimmer A 1985 Phys. Lett. 157B 393

[^0]: § On leave of absence from Cukurova University, Physics Department, Adana, Turkey.
 || Address after 1 September 1988: Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France.

