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Abstract. Pairing two elements of a given division algebra furnished with a multiplication 
rule leads to an algebra of higher dimension restricted by 8. This fact is used to obtain 
the roots of SO(4) and SP(2) from the roots 7 1  of SU(2) and the weights of its spinor 
representation. The root lattice of SO(8) described by 24 integral quaternions are obtained 
by pairing two sets of roots of SP(2). The root system of F, is constructed in terms of 24 
integral and 24 ‘half integral’ quaternions. The root lattice of E, expressed as 240 integral 
octonions are obtained by pairing two sets of roots of F,. Twenty four integral quaternions 
of SO(8) forming a discrete subgroup of SU(2) are shown to be the automorphism group 
of the root lattices of SO(8), F, and E8. The roots of maximal subgroups SO( 16), E, x SU(2), 
E, x SU(3), SU(9) and SU(5) x SU(5) of E, are identified with a simple method. Subsets 
of the discrete subgroup of SU(2) leaving maximal subgroups of E, are obtained. Construc- 
tions of E, root lattice with integral octonions in seven distinct ways are made. Magic 
squares of integral lattices of Goddard, Nahm, Olive, Ruegg and Schwimmer are derived. 
Possible physical applications are suggested. 

1. Introduction 

Supersymmetric Yang-Mills and superstring theories [ 13 in critical spacetime 
dimensions d = 3, 4, 6 and 10 attracted much attention regarding their relevance to 
four division algebras R (real numbers), d= (complex numbers), W (quaternions) and 
0 (octonions or Cayley numbers) [2]. Their respective dimensions 1,  2, 4 and 8 equal 
d - 2 physical modes corresponding to various transverse degrees of freedoms in critical 
spacetime dimensions. 

Their norm groups and automorphism groups will be our special interest. The 
norm groups of division algebras are linear transformations of the components of an 
element of the algebra which preserve the quadratic norm invariant. The norm groups 
are the discrete group Z2 for real numbers, U(1) for complex numbers, S0(4)== 
SU(2) x SU(2) for quaternions and SO(8) for octonions. The automorphism groups 
are the groups leaving the multiplication table of the imaginary units of the algebra 
invariant. They are Z2 for complex numbers, SU(2) for quaternions and G2 for 
octonions [3]. 

In this work we construct the root systems of the groups SU(2), SU(2)xSU(2),  
SO(8) and E8 with integral elements of four division algebras associated with real 
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1470 M Koca and N Ozdes 

numbers, complex numbers, quaternions and octonions respectively [4]. We start with 
+ l ,  the units of real integers and half integers *! representing respectively the non-zero 
roots and the weights of two-dimensional spinor representation of SU(2) and construct 
the remaining integral elements of complex numbers, quaternions and octonions. To 
do ikic we follow a well defined procedure ‘pairing’ two elements of a given algebra 
[ a ,  b ]  to defice an element in an algebra of higher dimension. The by-product of this 
approach is the emergence of the root systems of SP(2) and F4 associated with complex 
numbers and quaternions respectively. We obtain the root lattice of SO( 8) generated 
by integral quaternions by pairing two sets of SP(2) roots expressed as integral and 
‘half-integral’ complex numbers. Similarly the root lattice of E8 generated by 240 
integral octonions can be obtained by pairing two sets of roots of F4 expressed as 24 
integral quaternions and 24 ‘half-integral’ quaternions. 

The techniques we employ in this work may have an immediate application in the 
study of lattice construction of chiral fermionic strings, nicely discussed and reviewed 
by Schellekens and his collaborators [ 5 ] .  Another relevant application may arise in a 
possible extension of orbifold compactification of the heterotic string with Abelian 
symmetries to orbifolds with non-Abelian symmetries [6] with regard to the fact that 
the root system of SO(8) corresponds to the binary tetrahedral group which we will 
discuss later. 

The paper is organised as follows. In § 2 we introduce the definition of an integral 
elements of a division algebra and give the necessary machinary for further calculations. 
In 4 3  we construct the root systems of S0(4) ,  SP(2), SO(8) and F4. The integral 
quaternions describing the root lattice of SO(8) form a discrete subgroup of SU(2) of 
order 24 called a binary tetrahedral group. It is shown that this group is the automorph- 
ism group of the root systems of SO(8) and F4. When 24 short roots of F4 multiplied 
by and combined with 24 integral quaternions (long roots of F4) it is shown that 
they form a discrete subgroup of SU(2) of order 48 called a binary octahedral group. 
In § 4 we find a way of pairing of two sets of the roots of F4 to obtain the root lattice 
of E8 expressed as integral octonions. As an intermediate step the root lattice of SO( 16) 
is constructed with pairing two systems of roots of SO(9) and it is shown that the 
integral octonions describing SO( 16) roots do not close under octonionic multiplica- 
tions. This provides a hint for the construction of E8 root lattice from two sets of roots 
of F, which lead to 240 integral octonions which are closed under multiplication. 
Action of the elements of the binary tetrahedral group on the root system of E8 is 
investigated. Section 5 is devoted to branching of roots of E8 under its maximal 
subgroups SO( 16), E, x SU(2), E6 X SU(3), SU(9) and SU(5) x SU(5). A simple method 
is devised for the identification of these groups. Symmetries preserving the coset 
structures of E8 with respect to its maximal subgroups are derived. The magic squares 
of Goddard, Nahm, Olive, Ruegg and Schwimmer (GNORS) [7] are constructed with 
the method described here. A decomposition of the roots of E8 with respect to the 
subgroup F4 x G2 is also obtained. In 4 6 we remark on the possible use of the binary 
tetrahedral group in the vertex construction of level one representation of affine F4 
and E8 algebras. The possible use of the binary tetrahedral and the binary octahedral 
groups as orbifolds in the compactification of the heterotic string is also mentioned [8]. 

In appendix 1 we give four different decompositions of the root lattice of E8 under 
E6 x SU(3) with relevant symmetries indicated. Appendix 2 deals with additional 
properties of integral octonions. It is shown that there are seven distinct sets of integral 
octonions each of which equally describe the root lattice of E8. A simple prescription 
is suggested for the construction of a desired set. 
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2. Construction of division algebras with integral elements 

According to the celebrated Hurwitz theorem there are only four division algebras 
formed by real numbers, complex numbers, quaternions and octonions. Let X denote 
an element over four division algebras. Any element X satisfies a second-order equation 
(rank equation) with real coefficients 

X 2 - ( X + X ) X + X X  = 0 (2.1) 

where X + X  is twice the scalar part and X X  = X x  is the norm of X. x is complex, 
quaternionic and octonionic conjugation. The set of elements A satisfying (2.1) with 
X + R = integer and X X  = integer are called integral elements over four division 
algebras provided they obey the following conditions: 

(i) A is closed under subtraction and multiplication; 

(ii) A contains 1; (2.2) 

(iii) A is not a subset of a larger set satisfying (i)  and (ii). 

It is obvious that ordinary integers m and Gaussian integers m + i n  ( m  and n ordinary 
integers) satisfy (2.2). Equation (2.2) is also satisfied by 24 integral quaternions [9] 
and 240 integral octonions [4]. In 9 3 we will construct integral elements over division 
algebras starting with * 1  and show their relations with the root systems of SU(2), 
S0(4),  SO(8) and E8.  For a simple construction we follow the procedure described 
below. 

We may define complex numbers by taking a pair of real numbers. Similarly 
quaternions and octonions can be defined as pairs of complex numbers and pairs of 
quaternions respectively. Let P and Q be elements of a given division algebra besides 
octonions. There does not exist any division algebra beyond octonions. We denote 
[ P ,  93 as a pair of such elements and define the product of such pairs by the 
Cayley-Dixon procedure [ 101 

(2.3) 

[ P ,  93 can also be represented as the sum of these elements where Q is multiplied by 
an imaginary number on the left, i.e. [ P ,  91 = P +  eQ where e* = -1. The conjugate 
of such a pair is defined by 

[ P, Q ] [  R, SI = [ PR - SQ, RQ + I%]. 

so that the norm of [ P ,  Q] is given as 

[ P ,  QI[P,=" QI=[pi '+QQ,ol=P~+QQ. (2.5) 

Here P p  and Q o  are real numbers. Since this description is independent of the choice 
of the imaginary units, particularly in the case of octonions, we will often use (2.3) 
for the multiplication of two elements. However we will also define the imaginary 
units to make contact with other approaches. We define the scalar product of two 
elements [ P ,  91 and [R,  SI by 

( [ P ,  Q1, [ R  SI) = " R ,  SI + [ R , [ P ,  91) 
= t ( P R  + R P +  QS+ SQ). (2.6) 
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Let us now find the relation between this description and those with explicit imaginary 
units and give examples. Let a, and a, be two real numbers; then [a,, a,]  is a complex 
number which can be written as 

[a,, a, ]  = a,+ e la l  = C (2.7) 

where e: = - 1 ,  q =  -el .  e, is used in place of the usual imaginary number i with the 
idea that we will introduce the imaginary units for quaternions and octonions. Let us 
take two complex numbers C = a,+ elal  and C’= a,+ ela2 where a,, a , ,  a, and a3 
are real numbers. By combining two complex numbers C and C’ in the usual manner 
we obtain a quaternion q given by 

(2.8) 

At this stage we have introduced a second imaginary unit e: = -1,q = -e3 and defined 
e, = e3e1 = -e,e,. Similarly we take a pair of quaternions Q and Q’ and obtain an 
octonion [Q, Q’] by multiplying 0’ by an imaginary unit e7 on the left: 

Q = [C, C’] = a,+ e,a,+e,(a,+ ela2) = a,+ e ,a ,+  e2az+e3a3. 

[Q, ~ ’ ] = a , + a ~ e , + a , e ~ + a , e , + e ~ ( a , e ~ + a ~ e ~ + a ~ e , + a ~ ) =  2 aiei 
i=O 

(2.9) 

with the definition e4 = e7e1 = -e,e7, e5 = e7e2 = -e2e7, e6 = e7e3 = -e3e7. This is the 
notation of Gunaydin and Gursey [ l l ]  and further properties can be found in their 
pioneering work. Non-commutativity of quaternions and non-associativity of octonions 
can be proved by using (2.3). Although we do not need a multiplication formula other 
than (2.3) the reader may find it helpful to use the multiplication table of imaginary 
units of octonions defined in (2.9). When three imaginary units of octonions e,, eb 
and e, satisfy the relation enebec = -1  ( a  # b # c)  we call them associative triads and 
choose units such that they are represented by seven sets of ordered numbers 123, 246, 
435, 367, 651, 572 and 714. There are 28 anti-associative triads which can be obtained 
using the relations for associative triads. 

3. SO@) root lattice and the binary tetrahedral group 

In what follows all integral elements and ‘half-integral’ elements have norms of unity 
and 4 respectively. The way we define half-integral element will soon be clear but we 
should notice that half-integral elements do not satisfy (2.1) and (2.2). Integral and 
half-integral elements correspond to long and short roots of the relevant groups to be 
discussed provided they are multiplied by &‘. 

The units of ordinary integers * l  are the non-zero roots of SU(2) and its two- 
dimensional spinor representation is represented by the weights *;. The spinor weights 
of SU(2) will be essential to obtain the integral quaternions, spinor representations of 
SO(8) and integral octonions. We start with two sets of rtl, *$ to obtain integral and 
half-integral complex numbers providing norms are less than or equal to 1. The 
following pairs are the only possibilities: 

[*l ,  01 = *l  [0, * 1 ]  = *e, ( 3 . 1 ~ )  

[*;, 4 1  =+(*I  * e,). (3 . lb )  

In Lie algebras long and short roots differ by f i  besides those of c12. For this we 
have not included those terms like [*;, 01, [0, *;I, [*l ,  *f] and [*$, * l ]  as they do 
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not correspond to any root at all. Integral complex numbers (Gaussian integers) in 
( 3 . 1 ~ )  are the non-zero roots of SO(4) = SU(2) x SU(2) as *l and * e ,  are orthogonal 
to each other. Four half-integral complex numbers in (3.1 b) are weights of the vector 
representation (2 ,2)  of SO(4) and together with * l  and * e ,  they represent the non-zero 
roots of SP(2). This follows from the Coxeter-Dynkin diagram of SP(2) (figure 1) 
with the simple roots represented by e ,  and $( 1 - e , ) .  We notice that the roots *1 form 
the discrete Abelian group Z 2  leaving the representations of SU(2) invariant. Similarly 
kl ,  *e l  form the discrete Abelian group Z4 which is the automorphism group of the 
root lattice of SO(4). Z ,  also leaves the root system of SP(2) invariant. If we multiply 
the short roots (3.lb) of SP(2) by d2 we see that the eight elements of (3.la, b) form 
a larger group Z8. A similar situation will arise when we discuss the roots of F4. 

Now we come to the crucial point. Although the roots of SP(2) do not generate 
an integral lattice, when two sets of SP(2) roots are paired as in (2.8) they generate 
the root lattice of SO(8). To make this clear let us denote the SP(2) roots by set C: * l ,  
* e , ,  f(*l f e , ) .  Take two such sets and form pairs of them such that the norms of the 
pairs will be equal to 1. There are only three possibilities: 

( 3 . 2 ~ )  

(3.2b) 

These were obtained by Hurwitz [9] for the first time and they correspond to 24 discrete 
points on S3.  Since ( 3 . 2 ~ )  is generated by doubling the roots of SU(2)xSU(2)  they 
represent the four orthogonal roots of [SU(2)I4. Choosing the simple roots -1, e,, 
e 2 ,  e3 corresponding to each SU(2) we may draw an extended Coxeter-Dynkin diagram 
of SO(8) by joining each simple root to the simple root f ( 1 - e , - e 2 - e 3 )  (figure 2). 
Deleting any one of the roots -1, e , ,  e , ,  e3 one obtains an SO(8) diagram which leads 
to the set of 24 roots of SO(8) given by (3.2~1, b). We will prefer deleting -1 so that 
the heighest weight of the adjoint representation is represented by 1. (3.2~1, b) is 
essentially equivalent to the branching of the adjoint representation of SO( 8) under 

[(*I, * e , ) ,  01 =(*I ,  * e l )  

[+(*I * e , ) ,  $(*I f e,)] =$(*I * e ,  * e,* e3 ) .  

[O, (*I, * e , ) ]  = (*e39 *e21 

[SU(2)I4: 

28=(3,1,1,1)+(1,3,1,1)+(1,1,3, l ) + ( l ,  1, 1 , 3 ) + ( 2 , 2 , 2 , 2 ) .  (3.3) 

The first four brackets describe the adjoints of SU(2) each of which has one zero root. 
To find the connections with the orthogonal vectors ui ( i  = 1,2,3,4),  which is the usual 

Figure 1. Coxeter-Dynkin diagram of SP(2) with simple roots f (  1 + e , )  and e ,  

Figure 2. Extended Coxeter-Dynkin diagram of SO(8) (four disconnected roots of SU(2)4 
[(-l, el),O] and [0, (1, e , ) ]  are connected to the root - [ f ( - l + e , ) , f ( l + e , ) ] ) .  
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notation, we define the simple roots as 

e ,  = u1 - U, 
(3.4) 

u , = f ( l + e , )  

One can show that the integral quaternions consist of all expressions E?=, x,u, where 
the x, are integers and E?=, x, is even. 

One can easily show that the integral quaternions in (3.2a, b) satisfy (2.1) and (2 .2) .  
Thus 24 integral quaternions form a group called binary tetrahedral group denoted by 
(3 ,3 ,2) ,  meaning that it is generated by two independent generators satisfying S3 = T3 = 
(ST)’= Z, Z 2  = 1 [ 121. We may represent the quaternionic units by 2 x 2 matrices as 

e, = I e ,  = im2 e, = ia, e3 = ia, (3.5) 

where I is a 2 x 2 unit matrix and a, ( i  = 1,2 ,3)  are the Pauli matrices. Then we can 
give the 2 :: 2 matrix representation of (3.2a, b) which are unitary and of determinant 
1. Therefore 24 roots of SG(8) represented by unitary matrices form a discrete subgroup 
of SU(2). Taking the simple roots as in (3.4) we can show that the following integral 
elements are positive roots of SO(8): 

1, el, e , ,  e3 S = f ( 1 + e ,  + e, + e , )  T = t (  1 - e ,  + e, + e 3 )  

U = ; ( I+ e, - e,+ e3 )  

f( 1 - e ,  - e, - e l )  = U, - U, e, = u3 - U, e, = U,+ u4 

U, = f( 1 - e , )  U, = f (  e3 + e , )  u4 = t (  e, - e?) .  

(3.6) 

The table of products for these is given in table 1. We notice that the roots of [SU(2)I4 
+ I ,  * e , ,  *e , ,  *e3  form a subgroup of the binary tetrahedral group of order 8 called 
a quaternion group. There are four Abelian subgroups generated by S, T, U and V, 
two of which are independent and satisfy 

V =  f ( 1  + e ,  + e , -  e , )  s, U, v. 

S + s =  T +  F =  U +  U =  V +  v =  1. 

The action of a group element P on a root Q of SO(8) can be defined as 

Q + Q’ = PQP-’ = PQP (3 .8)  

Table 1. Table of products of the elements of the binary tetrahedral group. 

:, j 
e2 
e3 
S 
T 
U 
V 
s 
t 
ii 
v 

1 e1 e2 e3 s T U V S  T O P  
e1 - 1  e3 -e2 - U  U - T  -3 v - v  s f 
e2 -e3 - 1  e, - V  -3 V - U  T U - 4  S 
e3 e,  -e ,  -1  -f -V  - S  T U S  P -0 

e3 e ,  e, 1 V T U  S - p  -j= -3 
T v -ii -3 e2 -t s 0 V 1 - e ,  e, 
U -3  T - V  e, P - a  S t e,  1 -e2 
v - T  -s U e ,  S f - P  0 -e3 e, 1 
s U V T l  D V f - S  -e2 -e3 - e ,  
t -0 s V U I -e, e ,  - e 3  -T v S 
0 t - P  s V e2 1 -e3 -e ,  S - U  T 
P S -7  T - e ,  e3 1 -e, U S - V  
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which corresponds to a rotation of angle 7~ or 27~13 in a certain hyperplane depending 
on the choice of the group element P. Actually any quaternion can be written in the 
exponential form 

P = e u R =  ~ ~ e ~ + ~ , e , + ~ , e ~ + ~ ~ e ~ = c o s ( ~ + ~ s i n a  P P =  1 (3.9) 

where cos a = +( P + P) and R = ( P ,  e ,  + P,e2 + P , e 3 ) / d  P :  + P: + P:  with R2 = -1, fi = 
-R. Therefore a transformation of the form 

Q + Q' = eaRQ e-QR (3.10) 

is a rotation of angle 2a in the plane determined by the origin 0, unit vector 1 and P. 
It is obvious from (3.9) that transformations by +e ,  (i = 1,2,3)  and $ ( + l +  e ,  * e2+ e3)  
correspond to angles 7~ and 2 ~ 1 3  respectively. 

It is clear from (3.8) that the scalar part of a quaternion is left invariant. Moreover 
the angle between any two integral quaternion is also left invariant. Therefore the 
binary tetrahedral group constitutes a discrete subgroup of SU( 2), the automorphism 
group of quaternions, which also preserve the root structure of SO(8). Since the scalar 
part of a quaternion is left invariant under the binary tetrahedral group it is sufficient 
to know how the imaginary units e , ,  e , ,  and e3 transform under the action of group 
elements. Using table 1 one can show that under the action of the elements e , ,  e , ,  
e 3 ,  S, T, U and V the imaginary units transform as 

( 3 . 1 1 ~ )  

(3.11b) 

It is clear from (3.11a, b )  that the quaternion algebra is left invariant under the binary 
tetrahedral group. The group element S rotates the simple roots e , ,  e, and e3 in cyclic 
order. On the other hand we know that the outer automorphism of the SO(8) root 
lattice is the symmetric group S3 generated by an element which permutes the simple 
roots e , ,  e, and e3 in cyclic order and an element A which exchanges the order of two 
roots, say, e , e e 3 .  The element S of S3 is nothing other than the element S of the 
binary tetrahedral group. However A is not in the set of elements of the binary 
tetrahedral group as it does not preserve the quaternion algebra. We shall see later 
that S, T, U and V play important roles concerning the decomposition of E8 roots 
with respect to its maximal subgroup E,x SU(3). S preserves the level of the SO(8) 
roots which has been used to determine the cocyles arising in the vertex operator 
construction of affine F4 algebra [7]. 

Now we calculate the weights of three eight-dimensional representations of SO(8) 
in terms of quaternionic units. We adopt the usual notation 8,= (1 0 0 0), 
8, = (0 0 0 1) and 8, = (0 0 1 0) for the vector, spinor and antispinor representations 
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respectively in the Dynkin formalism [ 131. It is straightforward to obtain the following 
weights for three eight-dimensional representations of SO(8) as 

A1 A3 A* 

&(*e,* e3) ;(*e, * e2) ;(*e3* el) .  
8,: i(*l* e,)  8,: i ( i l  *e3)  8,: ;(*l* e,) (3.12) 

Since the choices for the representations v, s, c are arbitrary we have also denoted 
them by other labels A I ,  A3 and A2 denoting the whole set of corresponding eight 
weights. We note that each imaginary unit characterises one of the eight-dimensional 
representations. In fact the highest weight of the adjoint representation of SO(8) equals 
1. Thus the conjugacy classes of SO(8) representations are represented by four units 
of quaternions 1, e , ,  e, and e3.  Using (3.4) one can also express (3.12) in terms of 
the orthogonal vectors U, ( i  = 1,2,3,4) .  We also note that the group elements T, 
and v rotate the eight-dimensional representations in the cyclic order 8, + 8, + 8,+ 8,, . 
In contrast, S, % 0 and P do not preserve the levels of the weights. On the other 
hand the quaternion subgroup leaves each representation invariant while changing the 
levels of the weights within a given representation. These properties will be fully 
utilised in the construction of the E8 root lattice. 

Similar to the case in SP(2), if we multiply the weights in (3.12) by f i  and combine 
them with the 24 integral quaternions (3.2a, b )  we obtain a new discrete subgroup of 
SU(2) of order 48 which admits the binary tetrahedral group as a subgroup. This new 
group, denoted by (4,3,2), is called a binary octahedral group [12]. We will show in 
the next section that the 24 integral quaternions (3.2a, b )  and the 24 weights in (3.12) 
form the root system of F, with 24 long and 24 short roots respectively. 

4. Integral octonions and their symmetries 

This section and 0 5 will constitute the main parts of our work as they are related to 
the root lattice of E8. First we notice that the SO(8) root lattice with its weights of 
vector representation 8, in (3.12) are the roots of SO(9) where the remaining two spinor 
representations in (3.12) constitute the 16-dimensional spinor representation of SO(9). 
In pairing two SP(2) roots, if we had allowed pairings where norms less than 1 were 
allowed, we would have uniquely obtained the SO(9) root system. F4 admits SO(9) 
as the maximal subgroup so that the 48 non-zero roots of F4 decomposes under SO(9) 
as 

48=32+16. 14.1) 
Here 32 is the number of non-zero roots of SO(9). Equation (4.1) further splits under 
SO(8) as 

(4.2) 
We follow the same procedure described in 0 3 and first combine two SO(9) roots and 
check whether they correspond to any familiar root lattice. In fact when we pair two 
sets of SO(9) roots of A,, and A, we see that there is a unique way of obtaining a set 
of 112 integral octonions of unit norm which constitute the root lattice of SO(16). 
This pairing can be arranged as follows: 

48 = 24+ 8, + 8, + 8,. 

112=[A0,01+[0, AoI+[Ai, Ail. (4.3) 
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This is in accord with the branching of SO(16) with respect to its maximal subgroup 
SO(8) x SO(8):  

120 = (28,l) + (1,28) + (8,, 8,) (4.4) 

An explicit representation of 112 non-zero roots of SO(16) can be written in terms of 
integral octonions as follows: 

[A,, 01: *I ,  *e l ,  * e 2 ,  * e , ,  f(*l*el*e2*e3) 

lo, Aol: * e , ,  *e , ,  *e5, *e65 +(*e,* e,* e6* e,)  

[ A , ,  A,]: [$(*I1 * e , ) ,  f(*l* e , ) ]  =f(*l* el* e,* e,)  

[&(*I *el) ,  $(*e2*  e , ) ]  =!(*I * e l*  e5*  e6) 

[ f ( + e 2 * e 3 ) , f ( * l * e , ) ] = f ( * e 2 * e 3 * e , * e e , )  

[f(*e2rt e,) ,  ;(*e2* e,)]  =f(*e2* e,* e5*  e6).  

(4.5) 

We shall see that this set is not closed under multiplication. The next pairing must 
be done among the roots of F4 in (4.2) which combines three eight-dimensional 
representations of length 1 and the roots of adjoint of SO(8) of length square 2. It is 
interesting to note that the long and short roots of F4 split in equal numbers of 24 
each. A similar situation occurred in the case of SP(2). The simple roots of F4 (figure 
3) can be chosen as 

a , = $ ( l - e I - e 2 - e 3 )  a2= e2 a, = f (  e3 - e2) a, = $(el - e3) .  (4.6) 

When we calculate the roots of F4 with this choice of simple roots we exactly get a 
collection of Ao,  A,,  A2 and A, where the positive roots are given by 

1, e l ,  e2 ,  e3 4(lfe1*e2*e3) (4.7a) 

f(1 * el) ! ( * e 2 + e 3 )  (4.76) 

f (  1 * e31 +(*e1+e2) (4.7c) 

f(l* e21 ;(*e,+ e , ) .  (4.7d) 

Here (4.7a, b, c, d )  denote the positive weights of the adjoint, 8,, 8, and 8, of SO(8) 
respectively. Here again the quaternionic unit 1 represents the heighest root of F, as 
in the case of SO(8).  The weights in (3.12) also constitute the 24 non-zero weights of 
the 26-dimensional representation of F, . 

After this brief remark we are ready to construct the root lattice of E8 with integral 
octonions. Since we have already constructed the root lattice of the SO( 16) subgroup 

Figure 3. Coxeter-Dynkin diagram of F4 with integral and half-integral quaternions. 
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of E,, what remains is a pairing of two sets of A , + A 3 .  At this stage an ambiguity 
arises. We may have the following pairings: 

[A2 3 A21 [A3, A31 ( 4 . 8 ~ )  

[A2, A31 [A3 1 A21 (4.8b) 

for the 128-dimensional spinor representation of SO(16) to be added to 112 non-zero 
roots to yield 240 non-zero roots of E*. Which of them would constitute the right 
structure can be tested by the conditions stated in ( 2 . 2 ) .  The crucial criterion here is 
the closure of the set under the octonionic multiplication. We will show that the true 
structure will emerge only if we take the pairs in (4.8b). To prove this we calculate 
the products of the integral octonions given by (4.3) and show that their products 
generate two additional pairs [A,, A3] and [A3, A,]. Let us set up the required products 
by using (2.3): 

[Ao,O][Ab, O I = [ A O A ~ , O I ~ [ A O , O I  (4.9a) 

CO, A,][% Ab1 = [-Ab& O I c  [A,, 01 (4.9c) 

(4.9d) 

(4.9e) 

(4.9f 1 
Equations (4.9a, b )  mean that the set of integral octonions [A,, 01 and [0, A,] preserve 
their form by a left product of quaternions. [0, A,] represents a special set of integral 
octonions as they are obtained by multiplying the integral quaternions by e, on the 
left. The product of this special set with itself yields 24 integral quaternions [A,, 01 
presented in ( 4 . 9 ~ ) .  Equations (4 .94 e , f )  deserve more attention as their structures 
are more involved. Before analysing them a few remarks are necessary about the 
products of the form A,A, and AoAl.  The integral quaternions of A, can be split into 
two sets of elements, one set results in A o A , + A l  and AoAI-,Al;  the other set of 
elements yields products of the form AoAl = A 3  and AoAl = A2 and vice versa. To 
give a simple example let us take e ,  from A, and f( 1 + e , )  from A , .  It is clear that a 
left multiplication of f( 1 + e,) by e, and P, leaves ;( 1 + e,)  in the same set A , .  Indeed 
not only e, but the whole elements *l ,  *e , ,  *e2, *e3 of the quaternion group satisfy 
this property. The remaining elements S, T, U, V and their conjugates with their 
negatives satisfy the second condition. To make this point also clear let us choose S 
from A, and f ( e 3 +  e2)  and f ( l  + e , )  from A l .  Using table 1 we can write the products 
in (4.9d) as 

(4.10a) 

(4. l ob)  

Thus the above statement is true as $(- 1 + e3)  and ;( 1 - e2) belong to the sets A, and 
A, respectively. To see the validity of our statement for all elements of A. and A, we 
recall (3.11b) that the elements S, T, U and V always map a given set of weights to 
another set of weights so that the corresponding maps of S, T, U and do not coincide, 
Hence the right-hand side of (4.9d) should be either [A,, A3] or [A3, A,]. For the 
same reason (4.9e) should be also in the same form, i.e. [ M ,  NI should be either 
[A2, A,) or [A,,  A2]. The analysis of (4.9f) requires more effort; nevertheless one can 

[A,, Ol[O, 4 1  = [O, AoAAI= [O, A01 (4.9b) 

[A,, 01[A,, Ail = [AOAl, AOA1l = [ M ,  NI 

[O, AoI[A,, A11 = [-&A,, AlAolc [MI NI 

[ A , ,  Ai][B,, Bi ]=[A,B, -BiA: ,  B , A i + A , B : ] c  [C, D]. 

s$(e3+e2)  = -f( U +  7) =$(- -I  +e3)  

Sic1 + e , )  = f ( S +  U )  = ; ( I -  e 2 ) .  

- - -  
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show that the general structure of [ C ,  D ]  is one of the forms [ A , ,  01, [0, A,] ,  [ A , ,  A , ] ,  
[ A , ,  A,]  or [ A , ,  A , ]  but nothing else. To summarise, we can generate the root lattice 
of E8 in the form of integral octonions from the root lattice of SO(16) by performing 
multiple products of the elements of the set (4.5). When the terms [ A , ,  A,]  and 
[ A , ,  A2]  are added to (4.4) or (4.5) we get 240 integral octonions representing the root 
lattice of E8.  To check whether the new set is closed under multiplication we calculate 
the remaining products and show that the new set is really closed. To give a counter- 
example that two types of terms of the forms [ A , ,  A , ]  and [ A , ,  A,]  cannot be in a 
given set of integral octonions representing the roots of E8 let us consider the following 
product of these pairs: 

[ A , ,  A l l [ A 2 ,  A21 : [;(I + 4, ;(ez+ e 3 ) l [ f ( l  + e2) ,  ;cl+ e2)l = [ ; (e1  + e,+ e,) ,  ;e2] .  
(4.11) 

Since the terms in the bracket on the right-hand side of (4.11) do not correspond to 
eight-dimensional representations of SO(8) this term cannot be in the required set of 
integral octonions of E8. Therefore the set of the integral octonions satisfying (2.1) 
and (2.2) and representing the root lattice of E8 must be of the form 

2 4 0 = [ ~ , , 0 1 + [ 0 ,  A ~ I + ~ A ~ , A , I + ~ A ~ ~ A ~ I + ~ A ~ ,  (4.12) 

This represents an interesting pairing of two sets of the 48 roots of F,: A,+ A I  + A,+ A , .  
Let us now investigate the problem from a different point of view. We wish to 

discuss how two Coxeter-Dynkin diagrams of SO(8) can be connected to construct a 
Coxeter-Dynkin diagram of E8. We take two sets of Coxeter-Dynkin diagrams of 
SO(8) whose simple roots are expressed as in (3.4) and multiply the quatemionic 
simple roots in one set by e, on the left and then connect them to form an extended 
diagram of SO(16) by adding a simple root linking two simple roots, one from each 
SO(8) (figure 4). To end up with an extended Coxeter-Dynkin diagram of E8 we 
delete one of the roots in figure 4 and add one more root to right end of the diagram 
figure 5 .  At this point another puzzling situation arises. Namely, if we keep the orders 
of simple roots in two SO(8) diagrams we always generate two sets of roots in the 
form [ A i ,  A i ]  and [A,, A j ]  ( i  # j = 1,2 ,3) .  Since we have already proved that two sets 
like these terms should be out of the root lattice of E8 the combination of two SO(8) 
diagrams in this manner is not allowed. However there is a simple solution: one can 
interchange the orders of two simple roots say e 2 e  e3 in one of the diagram and then 
combine. Then one obtains a legal extended Coxeter-Dynkin diagram of E8 (figure 
5) .  When we change the orders of two simple roots in one of the SO(8) diagrams we 

6 
e6 

t, 
e3 

Figure4. Extended Coxeter-Dynkin diagram of SO( 16) (the diagram is made by combining 
two SO(8) diagrams in one of which two roots e , e e ,  is interchanged and the roots of 
this SO(8) is multiplied by e, on the left). 
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e3 
Figure 5. Extended Coxeter-Dynkin diagram of Es (integral quaternions representing the 
SO(8) subgroup are manifest). 

also change the label of two spinor representations. While in the first diagram, say, 
spinor and antispinor are represented by the set of weights A,  and A2 respectively; in 
the second the labels of the representations are reversed. 

Thus we obtain a decomposition of E8 under SO(8) x SO(8) 

248= (28, 1 ) + ( 1 , 2 8 ) + ( 8 , , 8 v ) + ( 8 s , 8 s ) + ( ~ c , ~ c ) .  (4.13) 

(24, 1): *l ,  *e,, *e2, *e3, $(*l*e,*e2*e3) ( 4 . 1 4 ~ )  

(1,24): *e7, *e4, *e,, *e6, f(*e7*e4*e,*e6) (4.14b) 
(&,tiv): [ ~ ( * 1 * e , ) , f ( * l * e , ) ] = f ( * l * e , * e 4 * e 7 )  

[$(*I * e,), f(*e,* e2)] =$(*I *el * e5* e6) 

[ f (i e3 * e,), f( * 1 * e,)] = ;( * e2 * e3 * e4 * e7) 
[f( *e3 * e*), $( *e3 * ea)] = $(*e2 * e3 * e5 * ea) 

(8s,8s): [ f (*1*e3) , f (*l*e2)]=f(*l*e3*es*e,)  
[&(*I * e,), t (*e ,  * e,)] = f ( * 1  * e3 * e4* e,) 

The non-zero roots of E8 are represented by the following integral octonions: 

(4 .14~)  

(4.14d) 

(4.14e) 
[$(*e3*e,) , f (*1*e3)]=f(*e,*e3*e6*e7)  

[4(*e3 * e,), ;(*e, * e,)] = ;(*e, * e, * e,* e5). 

To make contact with the generally accepted notation for simple roots derived from 
orthogonal vectors ui ( i  = 1,2,3,4) of (3.4) we introduce 

1, = [0, -;(e3+ ea)] = [O, -U,] = -;(es+ e6) 

Z2=[o, - f ( l -e , ) ]=[o,  -u2]=f(e4-e7) 
I3 = [O, -f( 1 + e,)] = [O, -ul]  = -;(e,+ e7) 
l4 = [4( 1 + el) ,  01 = [ U, ,0]  = f( 1 + e,)  

1, = [;(I - e,), 01 = [U,, 01 = ;(I - e,) 
16=  [$(e3+ e2), 01 =[U,, 01 = ;(e,+ e,) 
Z7 = [ t( e3 - e2), 01 = [ u4, 01 = t( e, - e2) 
1, = [O, -f(e3 - e2)l = [O, -U,] = $(e5 - e,). 

(4.15) 
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For a simple representation of Es in terms of its maximal subgroup SU(9) we also 
introduce another vector I ,  defined by 

8 

Io  = t C 1, = $( 1 + e3 - e6 - e,)  = [ t (  1 + e3 ) , -4( 1 + e3)]. (4.16) 

With these vectors the simple roots in the extended Coxeter-Dynkin diagram of E8 in 
figure 5 are represented from left to right by 

l8 - I ,  , I ,  - 1 2 ,  I ,  - I , ,  I ,  - l,, I ,  - I , ,  l5 - 1 6 ,  I ,  - 1 7 ,  1, - l o ,  I,+ I,. (4.17) 

Because of triality attributing labels to the eight-dimensional representations of SO(8) 
is completely arbitrary we could have equally represented the vector representation of 
SO(8) by the sets A* and/or A,.  Then we could have started with [A2,  A,] or [A3,  A3] 
instead of [ A , ,  A,] to construct the root lattice of SO(16). Then we would have 
generated the rest of the roots of Ex with a similar procedure to that described above. 
However the new sets of integral octonions would be completely different from those 
of (4.14). In appendix 2 we show that the integral octonions representing the root 
lattice of E8 can be built in seven distinct ways which can be obtained by replacing 
the imaginary units in (4.14) by the cyclic order 1 + 2 + 3 + 4 + 6 + 5 + 7 + 1 and by its 
repeated application. Therefore one should be very careful in distinguishing the integral 
octonions representing the root lattice of Es. After all there are ( t )  x 16 = 1120 distinct 
integral octonions of the form ;(*e, f eb * e, f e d )  ( a  # b # c # d # = 0,1 ,  . . . , 7 )  which 
are distributed in 7 sets of 240 integral octonions so that each set separately satisfies 
(2.1) and (2.2). 

Before we end this section we discuss the action of the binary tetrahedral group 
on the rest of integral octonions in (4.14). Let P be an element of the binary tetrahedral 
group, i.e. an integral quaternion of [A,, 01. Let R represents an octonion of the form 
[ M ,  NI, not necessarily of unit norm. We can define the action of P on R in the form 
similar to the one given by (3.8) 

R +. RI = PRF p = p-1, (4.18) 

To have this make sense the right-hand side of (4.18) must be associative. Indeed, 
this is the case. To prove this we can calculate the associator of the elements [P, 01, 

,= 1 

[ M ,  NI, [Q, 01: 

( [ P ,  01, [ M ,  NI, [Q,  01) = [PMQ- PMQ, QFN - FQNI. (4.19) 

Since P, M, N and Q are quaternions each triple product in the bracket is associative. 
To make (4.19) vanish we should have QP = FQ. This is satisfied for Q = P and Q = P. 
Therefore (4.18) is an unambiguous transformation of the form 

(4.20) 

provided we take Q=F. If we had taken Q = P  this would also correspond to a 
rotation in a hyperplane perpendicular to the hyperplane defined by 0, 1 and P. Now 
we check how the integral octonions (4.14) transform under the action of the elements 
of the binary tetrahedral group. Since we have already seen the transformations of 
the integral quaternions of the form [A,, 01 we investigate the transformations of the 
remaining terms in the forms [0, A,] and [ M ,  NI in (4.14). It is clear from (4.20) that 
the [0, A,] preserves its form: 

P :  [0, A,] + [0, F’A,] = [0, A,]. (4.21) 

[ P, O][ M, NI[ F, 01 = [ PMF, PZN] 
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By using (3.11~1, b) and (4.10a, b) we can show that the right-hand side of (4.20) 
remains always in the form [ A , ,  A,], [A3,  A,] and [A,, A3]. To become more explicit 
let us choose the elements from the quaternion subgroup and the Abelian subgroups 
of S, T, U and V. Let [P ,  01 be an element of quaternion subgroup of the binary 
tetrahedral group. By ( 3 . 1 1 ~ )  we can show that the left-hand terms in (4.20) remain 
in the same set of weights A, = PA,P The action of the quaternion group elements on 
the right-hand side leave the element N either unchanged or simply multiply by ( - 1 ) .  
Therefore the quaternion group acts as follows: 

[P ,  01[A,, A,I[E 01 =[A, ,  4 1  ( i = 1 , 2 , 3 ) .  (4.22) 

Thus the quaternion subgroup leaves the terms [A,, 01, [0, A,] and [A,,  A,] separately 
invariant. 

The actions of the Abelian subgroups can be done in a similar way. Let us do it 
for S. It is clear from (4.20) and (4.21) that the terms [A,, 01 and [0, A,] are left 
separately invariant under S. Let us see how it acts on the other terms. Using (4.20) 
we write 

[S, 0][A1, Al][S, O]=[SAIS, S2Al]=[SAlS, -SAl]. ( 4 . 2 3 ~ )  
Using ( 3 . 1 1 b )  and table 1 we can show that S A I S = A z  and -SA, = A 3 .  Therefore 
( 4 . 2 3 ~ )  is in the form [A,,  A3]. Similarly we can also show that 

(4.236) 

(4 .23~)  

Equations (4.23~2, b, c )  indicate that S rotates the sets [ A , ,  A,], [A,, A3] and [A3,  A2] 
in the cyclic order. The other Abelian subgroups T, U and V leave the set of roots 
of E8 (4.14) invariant. Thus we can conclude that the root lattice of E8 is preserved 
under the action of the elements of the binary tetrahedral group. We believe that this 
feature of the E8 root lattice is useful in the vertex construction of the level one 
representation of the affine E8 algebra (for a review, see [14]). 

[s, OIEA2, A3I[S 01 = [A3, A21 

[s, OI[A3> A2I[g, 01 = [Ai I AI]. 

5. Maximal subgroups of ES and the construction of the GNORS magic square 

In this section we give the branching of 240 roots of E8 with respect to its subgroups 
S0(16), E, x SU(2), E,x SU(3), SU(9), SU(5) x SU(5) and F,x G2 (for a construction 
of E8 algebra with respect to its maximal subgroups, see [ 151). The decomposition of 
a simple Lie group with respect to its maximal and regular subgroups can be found 
in the standard references [16]. We identify the subgroups of the binary tetrahedral 
group preserving the coset structures of E8 with respect to its subgroups. We decompose 
the roots of E8 in such a way that a magic square similar to that of Freudenthal, 
Rozenfeld and Tits E171 is transparent. This magic square obtained by GNORS [7] 
plays an important role in the vertex operator construction for level one representations 
of the groups of the magic square. Moreover we find their symmetries under the 
discrete subgroup of SU(2) with the hope that some additional features may arise 
concerning the Kac-Moody algebras based on these groups. 

5.1. SO(16) 

SO(16) is one of the maximal subgroup of E8. The most interesting thing in our 
construction is not SO(16) but its subgroup SO(8) x SO(8). We have already given the 
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roots of SO( 16) in (4.5) in terms of integral octonions. Therefore the remaining roots 
(8s, 8,)+ ( 8 c ,  8,) of (4.14d, e )  constitute an 128-dimensional spinor representation of 
SO(16). Since we have already noted that the quaternion group preserves the labels 
of vector, spinor and antispinor representations, this is reflected as the symmetry of 
the root lattice of SO( 16) and the 128-dimensional spinor representations defining the 
coset space of E8/SO( 16). We can also give the representations of SO( 16) in terms of 
the vectors defined in (4.15). The roots of E8 decomposes then as 112 like *li * 4 ,  i # j  
and 128 like ; ( - I ,  + l2 + I ,  + l4 + l5 + l6 + I ,  + I s )  with an odd minus sign in the latter. 

5.2. E ,  x SU(2) 

This group will be recognised as the maximal subgroup of E8 when the second root 
from the left in the extended Coxeter-Dynkin diagram (figure 5) is deleted. Then the 
diagram splits into two disjoint diagrams where the single disconnected root is describ- 
ing SU(2) and the remaining diagram is of E,. The roots in figure 5 are organised in 
such a way that SO(8) represented by integral quaternions remains always as a subgroup 
of one of the factor groups besides SU(9) and SU(S)xSU(5).  Therefore in the 
construction of root lattices and the cosets formed by the maximal subgroups we will 
often use the adjoint, vector and spinor representations of SO(8).  In this case SU(2) 
is represented by *e5. Because E, x SU(2) is maximal in E8 the roots of E, must be 
orthogonal to e5 ( e5 is represented by e2 on the right-hand side of the bracket). Therefore 
the roots of E, are such that e2 on the right-hand sides of the brackets is missing. 
Therefore the 126 non-zero roots of E, are nothing other than 

*I, *e, ,  *e2, *e3, f(*l*e,*e2*e3) ( 5 . 1 ~ )  

[o, (*el, *e33 *1)I=*e43 * e 6 ,  *e7 (5.lb) 

[A, 3 f(*1* e,)] [A,, ;(*I * e3)I [A3,f(*e3*ei)l. (5.lC) 

Where A,,  A2, and A3 are given by (3.12). We recall that ( 5 . 1 ~ )  together with Al ,  A2 
and A3 constitute the roots of F4. One can show that (5.lb) and the half-integral 
quaternions on the right-hand sides of brackets ( 5 . 1 ~ )  are the roots of SP(3). To check 
this we use the Dynkin diagram of SP(3) (figure 6) with the simple roots represented 
by 

a, =f( -1  +e,)  a2 =$( I  - e3) a 3 = e 3 .  (5.2) 

*I, *el ,  *e3, t(*l*el) ,  f(*e,*e3), ;(*1*e3). (5.3) 

We obtain 18 non-zero roots of SP(3) by Weyl reflections which lead to 

Here the first six roots are the long roots and the rest are the short roots. Thus 
(5.la, b, c )  can be regarded as a pairing of the roots of F4 and SP(3) each of which is 
represented by quaternionic roots. This corresponds to the construction of E, by 
‘matching’ the F4 and SP(3) root system discussed in [ 5 ] .  In the preceding section we 
have pointed out that there are several ways of linking two SO(8) diagrams leading 

Figure 6. Coxeter-Dynkin diagram of SP(3). 
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to a proper E8 diagram which gives the same set of roots of E8 in (4.14). This 
arbitrariness is reflected here in the choice of the roots of SU(2) from the quaternionic 
units * l ,  * e , ,  *e2, *e3. Since we have already illustrated the case with the selection 
of e, the remaining choices follow the same procedure. Therefore we may choose the 
roots of SU(2) four different ways and construct the roots of SP(3) accordingly and 
pair them with the unaltered roots of F4 in four different ways. This indicates that not 
only E7 x SU(2) can be embedded in E, four possible ways but also E7 can be constructed 
four different ways by pairing the roots of F4 and SP(3). After the roots of E7 x SU(2) 
are subtracted from (4.14) the remaining roots transform as a (56,2)-dimensional 
representation of E7 x SU(2). They can be constructed by replacing the half-integral 
quaternions on the right-hand side of the brackets in ( 5 . 1 ~ )  by the terms :(*e2* e 3 ) ,  
:(*e,  * e2) and f ( * l  * e,) respectively. This will give 96 roots only: 

[AI 3 ;(*e2 * 4 1  [ A , ,  ;(*e,  * e211 [ A 3 ,  ;(*I * 4 1 .  (5.4) 

When we add to these the 16 terms !(*e7* e4* e,* e6) we obtain the right number 112 
roots ofthe coset space of E8/E7 x SU(2). We note also that the root lattice of E, x SU(2) 
and hence its (56,2) dimensional representations are left invariant under the quaternion 
group. 

Before discussing other maximal subgroups of E, it is perhaps appropriate here to 
point out that if two sets of SP(3) roots of (5.3) are paired we obtain the root lattice 
of SO(12). Since (4.14) restricts us we have the only choice for pairing as follows: 

* I ,  * e , ,  * e 3 ,  [o, ( * I ,  *el, * e 3 ) I = * e 7 9  *e49 *e6 

[ t (  * e ,  * e3), ;( * 1 i e3)] = ;(*e, * e3 * e6 * e7). 

These are the 60 non-zero roots of SO( 12) occurring in the magic square of [7]. Here 
again we can construct the root lattice of SO(12) four different ways provided we 
remain in the same set of E, roots of (4.14). Equation (5.5) is also invariant under 
the action of the quaternion group. 

We will continue constructing the root systems of the magic square with integral 
octonions when they become relevant. Now we discuss the branching of the roots of 
E8 under E6 X s u ( 3 ) .  

5.3. E6 XSU(3) 

If we break up the extended Coxeter-Dynkin diagram in figure 5 by deleting e4 we 
obtain the disconnected diagrams for SU(3) and E6. Using the Weyl reflections formula 
we obtain the roots of SU(3): 

[O, *e2, *$(I  - e l -e2-e3) ,  * f ( l - e l + e 2 - e 3 ) l  

= *e5, $(e7 - e4- e5 - e6) ,  *;(e7 - e,+ e5 - e6) .  (5.6) 

The E6 roots must be orthogonal to the SU(3) roots. An immediate check shows that 
the half-integral quaternions orthogonal to those in (5.6) are the ones which do not 
include e2 and should be in the form 

*LO, $ ( I +  e , ) ]  *Lo, f ( l+  e , ) ] ,  *.[% t(ei - %)I. (5.7) 
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It is obvious from figure 5 that E6 includes SO(8) as a subgroup. Therefore 24 integral 
quaternions are also roots of E6. Since the weights of 8,, 8, and 8, will be put on the 
left of the brackets they are orthogonal to the roots in (5.6) by definition. Therefore 
by pairing the weight of 8,, 8, and 8, with those in (5 .7)  we get the remaining roots 
of E6. Therefore 72 non-zero roots of E6 will be as follows: 

* I ,  * e , ,  *e2, *e3, f (* l*e ,*e2*e3)  ( 5 . 8 ~ )  

A = [ A , ,  *+cl+ e,)], (5 .8b)  

where A I ,  A 3 ,  A,  are given by (3.12). The 48 roots in (5.86) can be split as two sets 
of 24 roots, one with a (+) and the other with a (-) sign. If we add the 24 roots in 
(5.8b) with (+) signs to those in ( 5 . 8 ~ )  we obtain the roots of F,, a subgroup of E6. 
All roots of F, are of the same length in this case because they are embedded in E6. 
Those 24 roots with (-) signs in (5.8b) represent the non-zero roots of the 26- 
dimensional representation of F,. When the roots of E6 (5.8a, b )  and the roots of 
SU(3) in (5.6) are subtracted from (4.14) the remaining integral octonions are the 
weights of the representation (27,3) + (27*, 3*). These roots will be discussed at the 
end of this section and in appendix 1 .  

A point of main interest is the symmetries of the E6 and SU(3) roots under the 
action of the elements of the binary tetrahedral group which constitute also some part 
of E6. Using ( 3 . 1 1 ~ )  and (4.20) we can show that (5.6) and (5.8~1, b) are invariant 
under the quaternion group. This is not the only symmetry in this case. Indeed 
Ed x SU(3) has much more symmetry compared with the other maximal subgroups. 
Now we can show that (5.6) and (5.8) are invariant under the Abelian subgroup 
generated by the element V, Let us consider the SU(3) roots. Since (5.6) is in the 
form [0, N I ,  under the action of V it transforms as 

B = [A3,  *;(e, - e,)], C = [ A 2 ,  * f ( l +  e3)] 

v :  [O, N]+ [O,  Q2N] = [O,  - V N ] .  (5.9) 
In an explicit form we have 

V: [O, * e , ] - , [ o , * f ( l - e , - e , - e , ) ]  

V: 

V: 
[o, *;(I - e, - e2 - e3)l + [O, *$(I  - e, + e, - e,)] 

[O, *f( 1 - e, + e ,  - e,)] + [O, *e2]. 

(5.10) 

It is understood from this that the roots of SU(3) are rotated in the cyclic order under 
V so they constitute an invariant set. Now let us apply V on the roots of E6. Equation 
( 5 . 8 ~ )  is invariant under V as it is the binary tetrahedral group. To see how V acts 
on (5.8b) we use (4.201, (3 .11b)  and table 1 again. We can show that the set of roots 
in (5.8b) transform as 

V: A + B + C + A .  (5 .11 )  
It is amusing that the set of roots of E6 rotates in a cyclic order just like the SU(3) 
roots. Since the whole set of roots of E8 is invariant under any transformation of the 
binary tetrahedral group the roots in the coset (27,3) + (27*, 3*) must also remain 
invariant under V. 

As we have noted in the case of E, x SU(2), SU(3) can also be represented by four 
different sets of roots each containing one quaternionic unit *ea (a  = 0 , 1 , 2 , 3 ) .  If we 
wish to construct another set of roots for E6 X SU(3) we may start with, say, *e3 instead 
of *e2  and apply V on *e3 in the same way we have done in (5.10) and obtain another 
V-invariant SU(3) root system. Then we construct the E6 roots in turn in a similar 
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fashion as described in (5.7). By following this procedure we obtain four possible 
decompositions of the root lattice of E8 with respect to E6xSU(3); in each case 
V-invariance is perserved. Had we required the invariances under S, T or U in such 
a decomposition we would also have been able to do so. In the latter cases one selects 
the quaternionic unit *ea as one of the simple root of SU(3) and apply any one of S, 
T or U to get the S, T, U-invariant SU(3) root systems. Following the same procedure 
for V we may obtain S, T, U-invariant E6 root systems. In each case there are always 
four possibilities. But one should notice that there does not exist two different 
invariances in a given decomposition. To summarise, there are 16 different ways of 
decomposing the root system of E, under E6 x SU(3). In each case the action of the 
quaternion group leaves the decomposition invariant. We have given 16 different 
decompositions of integral octonions in appendix 1 .  

Now we come back to the magic square obtained by matching the root lattices of 
SU(3), SP(3) and F,. We have already shown that [F4, F,], [F4,SP(3)] and 
[SP(3), SP(3)] give the root lattices of E,, E, and SO( 12) respectively. Now we construct 
the roots of SU(3) using half-integral quaternions of length one when each root is 
multiplied by a. If is not possible to construct SU(3) root system either by Gaussian 
integers or ‘half-integral’ complex numbers of (3.la, 6). Therefore we should use a 
subset of ‘half-integral’ quaternions. Let us choose the simple roots of SU(3) as f( 1 + e , )  
and i( e, - el) .  The root system derived from these simple roots is given by 

*$( 1 4 e l ) ,  *f( e, - el) ,  *f( 1 + e,). (5.12) 

Now we take two sets of roots of (5.12) and pair them in the usual way. Since this 
pairing will furnish a root system in integral octonions it should remain in (4.14). Then 
we have only one possibility of pairing two such sets in the following form: 

(5.13) 

These 12 integral octonions represent the root system of SU(3) x SU(3). What remains 
is a pairing of the roots of SU(3) with those of SP(3) with which the magic square 
will be completed. Thus we pair (5.3) with (5.12) provided the integral octonions so 
obtained remain in (4.14). In this case we are free to put (5 .3 )  or (5.12) on the left of 
the bracket which will lead to two independent representations of the emerging root 
system. If we prefer (5.3) on the left and (5.12) on the right we obtain 

[ (*I ,  * e , ,  *e,), 01 = ( * I ,  *e1 1 *e31 

(5.14) 

[-(*I I: e3), * f ( l  +e2)].  
These integral octonions are nothing but 6 + 8 x 3 = 30 non-zero roots of SU(6). To 
summarise, we obtained the GNORS magic square in terms of integral octonions. 

SU(3)  SP(3) F.4 

In addition to this magic square we have also found 

[SU(2), SU(2)] = SO(4) [SP(2), SP(2)] = SO(8) [ S 0 ( 9 ) ,  SO(9)] = SO(16). 
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5.4. SU(9) 

The Coxeter-Dynkin diagram of SU(9) can be obtained from figure 5 by deleting the 
root e3 corresponding to &+l,  in (4.17). Then 72 non-zero roots of the adjoint 
representation of SU(9) are given by the integral octonions of the form 

( i  # J  = 0, 1 ,  . . . , 8 )  (5.15) 

and the remaining 168 roots of E8 correspond to the weights of 84+ 84* representations 
of SU(9). They are given by 

*( l ,  + I ,  + l k  - 1 0 )  (5.16) 

We have not seen any symmetry leaving the root lattice of SU(9) invariant. This is 
obvious since one element e3 of the binary tetrahedral group is left out of the root 
lattice of SU(9). 

1, - I ,  

( i  # j  # k = 0,1, . . . , 8 )  

5.5. SU(5) x SU(5) 

In figure 5 we delete the root e ,  to obtain two disconnected Coxeter-Dynkin diagrams 
of SU(5) x SU(5). No symmetry is left preserving the root system of SU(5) x SU(5) 
since e ,  is taken out of the group structure of the binary tetrahedral group. The adjoint 
of SU(5) x SU( 5 )  is represented by 20 + 20 = 40 integral octonions as follows: 

I( 1 + e ,  + e2- e3) 
f( 1 + e, - ez - e3) 
f( 1 - e, + e, - e 3 )  
f ( 1 -  e ,  - e2-  e3)  

[ O ,  *e11 [ O ,  *e*] 
1 

(5.17) 

(5.18) 

*e,, * e 3 ,  + t (  1 - e, * e,+ e 3 ) .  

The remaining integral octonions of (4.14) transform as (5, lo*) + (5*, lo )+  (10,5) + 
( lo” ,  5*) under SU(5) x SU(5). 

5.6. F4 x G2 

This is a special subgroup of Eg. F4 and G2 are also exceptional groups with the 
following properties. 

Gz is the automorphism group of octonions and F4 is the automorphism group of 
the exceptional Jordan algebra of 3 x 3 octonionic Hermitian matrices. G2 is particularly 
interesting because one of its discrete subgroup leaves the integral octonions invariant. 
This point deserves further investigation; however, it will not be discussed here. Our 
main purpose here is to decompose 240 integral octonions under F4 x G2. 
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As we have explained before we may split (5 .8b)  into two sets of 24 integral 
octonions. Equation (5.86) can be written in the form [a, *b] where a represents the 
totality of A , ,  A, and A3 on the left and b those on the right. If we combine [a, b] 
with integral octonions of ( 5 . 8 ~ )  we obtain 48 roots of F,. The roots of G, are found 
by adding *e4, *e6, *e7 to the roots of SU(3) in (5.6). Hence the roots of G, are 

*e4, *e5 ,  *e6, *e7, *+( e7 - e4 - e5 - e6), *+(e7  - e,+ e, - e6). (5.19) 

The remaining roots of E8 can be classified as the representations of SO(8) x SU(3) a 
subgroup of F4 x G,: 

(%, 3 ) + ( & ,  3*): [ A I ,  - e , ) ]  
[ A I ,  *%*e2 * e311 ( 5 . 2 0 ~ )  

(&, 3) + (&, 3*): [A3, *;(e, + e3)l 
[A39 +(*I  * 4 1  (5.206) 

[A,, *;cl- e3)l 
[A29 *+(*e, f e211 ( 5 . 2 0 ~ )  

2[(1,3) + (1,3*)]: *+(e7+ e,+ e,+ e6), 

*;( e7 - e,+ e5 + e6), 
*f(e ,+e,-e ,+e,) ,  * f ( e7+e4-e5 -e6 ) .  (5.20d) 

There are 3 x 48+4x3 = 156 integral octonions in (5.20a, b, c, d ) .  When we add this 
to 24 non-zero roots in the form [a, -b] of (5.86) we obtain 180 roots of the coset 
space E8/F4 x G,. If this number is added to 48 + 12 non-zero roots of F4 and G2 we 
get back 240 integral octonions of E8.  This decomposition of E8 is also invariant under 
the quaternion group. 

(&, 3) + (%, 3*): 

*+(e7+ e,+ e5 - e6) 

it( e7 - e, - e, + e6) 

6. Discussions and conclusion 

The method we have described for the constructions of the root systems of S0(4),  
SP(2), SO(8), F4 and E8 from that of SU(2) is very simple and perhaps useful. A pair 
of elements [a, b ]  belonging to a division algebra furnished with a product rule is 
independent of the particular choices of the imaginary units of the corresponding 
division algebras. Therefore it provides a unified way of treating the root systems of 
the corresponding Lie algebras. This is particularly useful in the case of E8 since the 
choices of the imaginary units of octonions are somewhat arbitrary. 

The root lattices expressed in terms of integral elements of the corresponding 
division algebras have overwhelming properties, namely they correspond to certain 
discrete groups or algebras. These aspects single out the groups SU(2), SU(2) x SU(2), 
SO(8) and E8 and also SP(2), SO(9) and F4 slightly less so. One feature of this method 
is the possibility of classification of the maximal subgroups of E8 under the actions of 
the subsets of the discrete subgroup of SU(2) of 24 integral quaternions. 

We have also noted that the root system of F4 is invariant under the binary tetrahedral 
group. There exists an Abelian subgroup of the binary tetrahedral group generated 
by an element S which has been used by GNORS to determine the cocyles arising in 
the vertex construction of a level one representation of the affine F4 algebra. It is 
perhaps more interesting to use the full group invariance in such a problem and check 
what effect will result. 
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Another interesting aspect is the classification of the embeddings of E, X SU(3) in 
E, respecting various invariances of Abelian subgroups generated by S, T, U and V. 
This may have some connections with orbifold compactifications of the heterotic string 
if the discrete subgroups of SU(2) with 24 or 48 elements are embedded in one of its 
maximal subgroups of E8. 

We have also constructed the root lattices of the groups of the GNOR magic square 
in terms of integral octonions. Integral elements of division algebras are also proposed 
for a new description of lattice gauge fields in which the fundamental object is a 
discrete version of a principle fibre bundle [18]. 

The roots of E8 in the form [ A , ,  A , ]  in (4.5) is the (8,,, 8,) representation of 
SO(8) x SO(8). It was clear from the discussion following (4.9f) that all the roots of 
E, can be generated by squaring [ A , ,  A , ] .  There is a close correspondence between 
this structure and the construction of the level one representation of the affine Es 
algebra [ 191. 
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Appendix 1. Invariant decompositions of the E8 root lattice under E6 x SU(3) 

As we have explained in 5 5 there are four different embeddings of E, X SU(3) in E,. 
In each embedding one of the Abelian subgroups S, T, U and V of the binary tetrahedral 
group is preserved. In each embedding there are four possible choices for the roots 
of SU(3) and correspondingly for E,. We give one invariant embedding in an explicit 
form and explain how it should be understood. Since SO(8) c E6 and sU(3) C SO(8) 
we take the advantage of pairing of the weights of 8,, 8,, 8, with the ‘half integral’ 
quaternions orthogonal to the SU(3) roots. In table 2 we give S invariant embeddings 

Table 2 should be understood as follows. If the roots of SU(3) are chosen as 
Of E6 X s u ( 3 )  in Est 

[0, * l ]  = *e7 

[o, * S I  = *;(e7 - e4 - e, - e6) 

[0, *SI = * f( e7 + e4 + e, + e,) 

( A l . l )  

then the corresponding E6 roots are 

* I ,  * e , ,  * e 2 ,  * e 3 ,  t (*1*e ,*e2*e3)  

[ A I ,  * t ( e 2 - e , ) ] ,  [ A , ,  * f ( e i - e2 )1 ,  [A31 *%e3-ei)I (A1.2) 

where A , ,  A2 and A 3  are given by (3.12). The roots of Es in the representations 
(27,3) + (27*, 3*) of E6 x SU(3) are obtained by pairing the elements in columns labelled 
by 1 ,  2, 3 with the corresponding elements in the first unlabelled elements, i.e. with 
three zeros in the case of SU(3) roots and with A , ,  A 2  and A3 in the case of E, roots. 
Under the action of S, the roots in (Al .1)  and (A1.2) are rotated in cyclic order from 
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Table 2. S-invariant embeddings of E, x SU(3) in ER.  

0 1 2 3 

Table 3. T-invariant embeddings of E, x SU(3) in Es 

0 1 2 3 

Table 4. U-invariant embeddings of E, x SU(3) in E R .  

0 1 2 3 

Table 5. V-invariant embeddings of E, X sU(3)  in €8 

0 1 2 3 
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top to bottom so that each column remains invariant under S. Similarly the elements 
in columns 1, 2, 3 are rotated to each other in their own sectors. Therefore coset 
structure is preserved by S. Thus whenever one column is preferred for the roots for 
SU(3) and E6 the other columns serve for the coset space. This displays the four 
different S-invariant decompositions of E8 under E,x SU(3) .  Similar tables for T, U 
and V can be made as in tables 3, 4 and 5.  

Appendix 2. Seven modules of integral octonions 

In this appendix we explain how seven distinct root systems of E8 each of which 
consists of 240 integral octonions can be constructed. Each module is closed under 
multiplication. We have already shown in (4.12) that 240 integral octonions describing 
the root lattice of E8 are given by 

2 4 0 = [ ~ , , 0 1 + [ 0 ,  ~ , 1 + ~ ~ , , ~ , 1 + ~ ~ , , ~ , 1 + ~ ~ , , ~ ~ 1  (A2.1) 

where Ai ( i  = 0, 1,2 ,3)  are defined by (3.12) and (4.5). This root system corresponds 
to the Coxeter-Dynkin diagram of E8 in figure 5. Since labelling of the vector, spinor 
and antispinor representations of SO(8) is arbitrary we could have started with a 
labelling of the vector representation by the set of weights A, and/or A,.  Then this 
would lead to two different sets of integral octonions each of which is equally describing 
the root lattice of E8. They would be given by 

240 = [A,, 01 + [O, A,] +[A,, &]+[A3 A,I+[Al 9 A31 

240=[Ao, O I + [ O ,  AoI+[A,, A3I+[Ai, AJ+[A2 ,  AI]. 

(A2.2) 

(A2.3) 

These sets of integral octonions correspond to different assignments of the simple roots 
in figure 5.  Equation (A2.2), e.g., can be obtained from a diagram where the two 
diagrams of SO(8) in figure 4 are rotated, one in the clockwise direction and the other 
in the counterclockwise direction such that e5 and e, are connected to a root of the 
form i( -1  - e, - e5 - e7) = -[+( 1 + e,) ,  f( 1 + e , ) ] .  To obtain a similar diagram of E8 we 
delete the root e4 in the new diagram and add the root f ( - 1  - e 3 - e 4 - e 7 ) =  
-[+( 1 + e , ) ,  f (  1 + e , ) ]  to the right end of the diagram which will be connected to e3 .  
For (A2.3) a similar procedure can be followed. We should note that the roots [A,, 01 
and [0, A,] are unaltered under these changes. We also note that a term [ M ,  NI in 
(A2.1) and (A2.3) should be understood as [ M ,  NI = M + e , N .  

The remaining four modules of 240 integral octonions can be obtained replacing 
associative triad e1e2e3 by other triads. Since there are seven associative triads 123, 
246, 435, 367, 651, 572, 714 one can start with any one of them. Let us choose the 
triads involving e ,  besides e ,  e2e3. Then we obtain the remaining four modules. Actually 
we obtain three modules for 651 and three modules for 714; however, in each case 
one module coincides with the one already constructed. When we choose e6 ,  e 5 ,  e ,  
as our new quaternionic units with e4e6 = e , ,  e4e5 = e , ,  e4e, = e, we first construct SO(8) 
roots and eight-dimensional representations with e6 ,  e5 and e , .  Then we construct 
integral octonions with new quaternionic units in which case e4 plays the role of 
independent imaginary unit. Let us denote Ab representing 24 integral quaternions 
generated by e6 ,  e 5 ,  e , :  

Ah: * l ,  * e 6 ,  * e 5 ,  * e , ,  f ( * 1 *  e ,  * e5 * e6) .  (A2.4) 
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Let the vector, spinor and antispinor representations of SO(8) be given by the sets of 
weights 

(A2.5) 

With (A2.4) and (A2.5) we can construct the following three sets of modules of integral 
octonions: 

240 = [Ah, 01 + [o, Ah1 + [A6 3 A 6 i  + L A ,  7 
(A2.6) 

240=[Ah, O]+[o, A 5 1 + f [ A 6 ,  A6i (A2.7) 

240=[Ah, O I + [ O ,  A~I+[AI,AII+[A,,A~I+[A~,A~I. (A2.8) 

Here (A2.8) coincides with (4.14) so that this module is not independent. We note 
that the brackets in (A2.6,7, 8) should be understood as follows: 

+ [A5 3 AI1 

[ M , N ] = M + e 4 N .  

In the case of the quaternionic units (e7,  e , ,  4 ,  e5 is the independent imaginary unit 
satisfying 

e5e7 = e, e5el = e6 e5e4 = e3 

In this case we denote 24 integral quaternions by A,” given by 

A:: i l ,  * e 7 ,  * e l ,  *e4, t (* l*e l*e4*e7) .  (A2.9) 

The weights of vector, spinor and antispinor representation can be written as 

( A2.10) 

Using (A2.9) and (A2.10) we construct three more modules of integral octonions two 
of which are independent: 

240= [A:, 01 -I- [O, A,”I+[A7 9 A,I+[A4, AiI+[Ai,  A41 

240 = [Ab’ 01 [A7 A41 -I- [A49 A71 

2 4 0 ~  [A:, O I +  [O, A,”]+ [A49 A41 +[AI 9 A71 +[A73 AI]. 

(A2.11) 

(A2.12) 

(A2.13) 

Here (A2.12) coincides with (4.14), therefore it is not independent. The brackets here 
should be understood as [ M, NI = M + e5 N. 

Therefore seven independent modules of integral octonions are (A2.1), (A2.2), 
(A2.3), (A2.6), (A2.7), (A2.11) and (A2.13). We have already noted that these modules 
can also be obtained replacing the imaginary units in (A2.1) by successive applications 
of the changes of the units in the cyclic order 1 + 2 + 4 + 3 + 6 + 5 + 7 + 1.  In each 
module one of the imaginary unit plays an essential role by representing the vector 
representations (&, 8,) in the form [Ai,  Ai] ( i  = 1 , 2 , .  . . . , 7 )  in a given module. 

[O, %I + [AI 9 Ai1 
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